2,394 research outputs found
Shrinking into the big city: influence of genetic and environmental factors on urban dragon lizard morphology and performance capacity
Urban wildlife faces a novel set of challenges resulting in selective pressure that can lead to population-level changes. We studied Australian water dragons (Intellagama lesueurii) from urban and natural populations to test if urban populations differed in body size, shape, and performance capacity. If urban-derived morphology has arisen through selection, we predicted distinct morphological differences between wild dragons from urban and natural areas in both adult and hatchling life-stages. Urban hatchlings were morphologically distinct (shorter body lengths and longer limbs) from natural populations, while urban adult males continued this trend but only for body size (shorter body lengths). We then experimentally reared hatchlings originating from urban and natural populations within urban- and natural-style enclosures (2 x 2 factorial design) for a year to determine if differences in morphology and performance capacity (sprint speed, endurance, and clinging ability) were related to either the individual's origin population or developmental environment. Yearlings reared in urban-style enclosures, irrespective of population origin, had smaller body sizes compared to those from natural-style enclosures, suggesting developmental environment was affecting their morphology. Despite this difference in body size, yearling dragon performance capacity was not significantly different between treatments. Overall, this study provides evidence of a complex relationship driving urban-divergent morphology - whereby urban dragons emerge as smaller hatchlings with longer limbs (innate traits) and are then further influenced by the urban environments that they develop in (phenotypic plasticity); however, and potentially owing to behavioral, ecological, and demographical differences, these changes appear to be sex-specific
Leopard tortoise (Stigmochelys pardalis) road mortality and extralimital occurrence in Western Cape, South Africa
During field surveys in the Spring of 2018 we made two observations of Leopard Tortoises (Stigmochelys pardalis) on roadsides near Lambert's Bay, WC, South Africa. One was a deceased adult female, killed as a result of a tortoise-vehicle collision. The other was a live adult females, which was move off the road in the direction she was headed. These observations illustrate that even the largest tortoise species in the region can be suseptable to road mortlaity, a known threat of turtle and torioses populations globally. Furthermore, these observations occured well outside the species presumed native range and listed introduced range
Measuring galaxy cluster masses with CMB lensing using a Maximum Likelihood estimator: Statistical and systematic error budgets for future experiments
We develop a Maximum Likelihood estimator (MLE) to measure the masses of
galaxy clusters through the impact of gravitational lensing on the temperature
and polarization anisotropies of the cosmic microwave background (CMB). We show
that, at low noise levels in temperature, this optimal estimator outperforms
the standard quadratic estimator by a factor of two. For polarization, we show
that the Stokes Q/U maps can be used instead of the traditional E- and B-mode
maps without losing information. We test and quantify the bias in the recovered
lensing mass for a comprehensive list of potential systematic errors. Using
realistic simulations, we examine the cluster mass uncertainties from
CMB-cluster lensing as a function of an experiment's beam size and noise level.
We predict the cluster mass uncertainties will be 3 - 6% for SPT-3G, AdvACT,
and Simons Array experiments with 10,000 clusters and less than 1% for the
CMB-S4 experiment with a sample containing 100,000 clusters. The mass
constraints from CMB polarization are very sensitive to the experimental beam
size and map noise level: for a factor of three reduction in either the beam
size or noise level, the lensing signal-to-noise improves by roughly a factor
of two.Comment: 28 pages, 5 figures: figs 2, 3 updated, references added: accepted
for publication in JCA
Adoption of artificial intelligence in breast imaging: evaluation, ethical constraints and limitations
Abstract: Retrospective studies have shown artificial intelligence (AI) algorithms can match as well as enhance radiologist’s performance in breast screening. These tools can facilitate tasks not feasible by humans such as the automatic triage of patients and prediction of treatment outcomes. Breast imaging faces growing pressure with the exponential growth in imaging requests and a predicted reduced workforce to provide reports. Solutions to alleviate these pressures are being sought with an increasing interest in the adoption of AI to improve workflow efficiency as well as patient outcomes. Vast quantities of data are needed to test and monitor AI algorithms before and after their incorporation into healthcare systems. Availability of data is currently limited, although strategies are being devised to harness the data that already exists within healthcare institutions. Challenges that underpin the realisation of AI into everyday breast imaging cannot be underestimated and the provision of guidance from national agencies to tackle these challenges, taking into account views from a societal, industrial and healthcare prospective is essential. This review provides background on the evaluation and use of AI in breast imaging in addition to exploring key ethical, technical, legal and regulatory challenges that have been identified so far
Recommended from our members
A Meta-analysis of the Diagnostic Performance of Diffusion MRI for Breast Lesion Characterization.
Background Various techniques are available to assess diffusion properties of breast lesions as a marker of malignancy at MRI. The diagnostic performance of these diffusion markers has not been comprehensively assessed. Purpose To compare by meta-analysis the diagnostic performance of parameters from diffusion-weighted imaging (DWI), diffusion-tensor imaging (DTI), and intravoxel incoherent motion (IVIM) in the differential diagnosis of malignant and benign breast lesions. Materials and Methods PubMed and Embase databases were searched from January to March 2018 for studies in English that assessed the diagnostic performance of DWI, DTI, and IVIM in the breast. Studies were reviewed according to eligibility and exclusion criteria. Publication bias and heterogeneity between studies were assessed. Pooled summary estimates for sensitivity, specificity, and area under the curve were obtained for each parameter by using a bivariate model. A subanalysis investigated the effect of MRI parameters on diagnostic performance by using a Student t test or a one-way analysis of variance. Results From 73 eligible studies, 6791 lesions (3930 malignant and 2861 benign) were included. Publication bias was evident for studies that evaluated apparent diffusion coefficient (ADC). Significant heterogeneity (P < .05) was present for all parameters except the perfusion fraction (f). The pooled sensitivity, specificity, and area under the curve for ADC was 89%, 82%, and 0.92, respectively. The highest performing parameter for DTI was the prime diffusion coefficient (λ1), and pooled sensitivity, specificity, and area under the curve was 93%, 90%, and 0.94, respectively. The highest performing parameter for IVIM was tissue diffusivity (D), and the pooled sensitivity, specificity, and area under the curve was 88%, 79%, and 0.90. Choice of MRI parameters had no significant effect on diagnostic performance. Conclusion Diffusion-weighted imaging, diffusion-tensor imaging, and intravoxel incoherent motion have comparable diagnostic accuracy with high sensitivity and specificity. Intravoxel incoherent motion is comparable to apparent diffusion coefficient. Diffusion-tensor imaging is potentially promising but to date the number of studies is limited. © RSNA, 2019 Online supplemental material is available for this article
Challenges of dehydration result in a behavioral shift in invasive toads
The adaptive nature of invasive species facilitates their survival in conditions that differ markedly from their native range. Behavioral changes in invasive populations are poorly explored but offer a wide potential when combined with physiological traits. For amphibians invading xeric habitats, finding water is important to function optimally and avoid dehydration. The water-finding hypothesis postulates that survival can be enhanced through the increased behavioral ability to find water. We tested the water-finding hypothesis in guttural toads (Sclerophrys gutturalis) from their native range and an invasive population. Additionally, we tested if artificially elevated corticosterone levels, which increase during dehydration, affect behavioral traits linked to water balance. In a labyrinth experiment, we observed the toads’ ability to find water in different hydration states (100%, 90%, and 80%). We found that individuals from the invasive population took longer to engage in water-searching behavior and spent more time close to the water source after finding it. Toads from the invasive population were also more active, and at 90% hydration, their attempts to find water increased. Moreover, artificially increasing corticosterone in fully hydrated invasive toads increased water-finding success. Our experiments demonstrated that invasive toads show water-conservation behaviors that can optimize water balance and might facilitate survival in an invaded xeric environment. Additionally, we suggest a link between elevated corticosterone levels and water-finding success. Our results lend support to the importance of behavior in successful invasions and the modulation of water-finding behavior by corticosterone
Wing Patterns in the Mist
Arnaud Martin is with University of California Irvine, Durrell D. Kapan is with University of Hawaii at Manoa, Lawrence E. Gilbert is with UT Austin.The aesthetic appeal of butterfly wing patterns has been costly to their status as a tool of fundamental scientific inquiry. Thus, while mimetic convergence in wing patterns between edible “Batesian” mimics and distasteful models, or between different distasteful “Müllerian” mimics (species that cooperate to educate predators) has long been the subject of genetic analysis [1] and field experiments [2], most biology text books confine mimicry to sections on striking adaptations without applying these examples to broader topics of evolution. Meanwhile, the study of color patterns in animals, often tucked into the same sections of texts, is undergoing a revolution in this age of evo-devo and genomics [3]. Among insect models for studying color pattern, the genus Heliconius is gaining the attention of an ever-widening audience.Biological Sciences, School o
Phylogenetic Codivergence Supports Coevolution of Mimetic Heliconius Butterflies
The unpalatable and warning-patterned butterflies _Heliconius erato_ and _Heliconius melpomene_ provide the best studied example of mutualistic Müllerian mimicry, thought – but rarely demonstrated – to promote coevolution. Some of the strongest available evidence for coevolution comes from phylogenetic codivergence, the parallel divergence of ecologically associated lineages. Early evolutionary reconstructions suggested codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and this was initially hailed as the most striking known case of coevolution. However, subsequent molecular phylogenetic analyses found discrepancies in phylogenetic branching patterns and timing (topological and temporal incongruence) that argued against codivergence. We present the first explicit cophylogenetic test of codivergence between mimetic populations of _H. erato_ and _H. melpomene_, and re-examine the timing of these radiations. We find statistically significant topological congruence between multilocus coalescent population phylogenies of _H. erato_ and _H. melpomene_, supporting repeated codivergence of mimetic populations. Divergence time estimates, based on a Bayesian coalescent model, suggest that the evolutionary radiations of _H. erato_ and _H. melpomene_ occurred over the same time period, and are compatible with a series of temporally congruent codivergence events. This evidence supports a history of reciprocal coevolution between Müllerian co-mimics characterised by phylogenetic codivergence and parallel phenotypic change
Topology by Design in Magnetic nano-Materials: Artificial Spin Ice
Artificial Spin Ices are two dimensional arrays of magnetic, interacting
nano-structures whose geometry can be chosen at will, and whose elementary
degrees of freedom can be characterized directly. They were introduced at first
to study frustration in a controllable setting, to mimic the behavior of spin
ice rare earth pyrochlores, but at more useful temperature and field ranges and
with direct characterization, and to provide practical implementation to
celebrated, exactly solvable models of statistical mechanics previously devised
to gain an understanding of degenerate ensembles with residual entropy. With
the evolution of nano--fabrication and of experimental protocols it is now
possible to characterize the material in real-time, real-space, and to realize
virtually any geometry, for direct control over the collective dynamics. This
has recently opened a path toward the deliberate design of novel, exotic
states, not found in natural materials, and often characterized by topological
properties. Without any pretense of exhaustiveness, we will provide an
introduction to the material, the early works, and then, by reporting on more
recent results, we will proceed to describe the new direction, which includes
the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte
Genetic Evidence for Hybrid Trait Speciation in Heliconius Butterflies
Homoploid hybrid speciation is the formation of a new hybrid species without change in chromosome number. So far, there has been a lack of direct molecular evidence for hybridization generating novel traits directly involved in animal speciation. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has been proposed as a hybrid species, and its color pattern can be recreated by introgression of the H. m. melpomene red band into the genetic background of the yellow banded H. cydno cordula. This hybrid color pattern is also involved in mate choice and leads to reproductive isolation between H. heurippa and its close relatives. Here, we provide molecular evidence for adaptive introgression by sequencing genes across the Heliconius red band locus and comparing them to unlinked wing patterning genes in H. melpomene, H. cydno, and H. heurippa. 670 SNPs distributed among 29 unlinked coding genes (25,847bp) showed H. heurippa was related to H. c. cordula or the three species were intermixed. In contrast, among 344 SNPs distributed among 13 genes in the red band region (18,629bp), most showed H. heurippa related with H. c. cordula, but a block of around 6,5kb located in the 3′ of a putative kinesin gene grouped H. heurippa with H. m. melpomene, supporting the hybrid introgression hypothesis. Genealogical reconstruction showed that this introgression occurred after divergence of the parental species, perhaps around 0.43Mya. Expression of the kinesin gene is spatially restricted to the distal region of the forewing, suggesting a mechanism for pattern regulation. This gene therefore constitutes the first molecular evidence for adaptive introgression during hybrid speciation and is the first clear candidate for a Heliconius wing patterning locus
- …