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Abstract
Urban wildlife faces a novel set of challenges resulting in selective pressure that can lead to population-level changes.We studied
Australian water dragons (Intellagama lesueurii) from urban and natural populations to test if urban populations differed in body
size, shape, and performance capacity. If urban-derived morphology has arisen through selection, we predicted distinct morpho-
logical differences between wild dragons from urban and natural areas in both adult and hatchling life-stages. Urban hatchlings
were morphologically distinct (shorter body lengths and longer limbs) from natural populations, while urban adult males
continued this trend but only for body size (shorter body lengths). We then experimentally reared hatchlings originating from
urban and natural populations within urban- and natural-style enclosures (2 × 2 factorial design) for a year to determine if
differences in morphology and performance capacity (sprint speed, endurance, and clinging ability) were related to either the
individual’s origin population or developmental environment. Yearlings reared in urban-style enclosures, irrespective of popu-
lation origin, had smaller body sizes compared to those from natural-style enclosures, suggesting developmental environment
was affecting their morphology. Despite this difference in body size, yearling dragon performance capacity was not significantly
different between treatments. Overall, this study provides evidence of a complex relationship driving urban-divergent morphol-
ogy –whereby urban dragons emerge as smaller hatchlings with longer limbs (innate traits) and are then further influenced by the
urban environments that they develop in (phenotypic plasticity); however, and potentially owing to behavioral, ecological, and
demographical differences, these changes appear to be sex-specific.
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Introduction

Suitable habitat isolated within urban areas can be thought of
as ‘islands’ and are exceptional crucibles for studying the
evolution of species adapting to, and persisting within, them
(Alberti et al. 2017; Johnson and Munshi-South 2017;
Ouyang et al. 2018). Novel environments create selective
pressures within urban landscapes that may have a strong
effect on remnant populations, resulting in physiological
(French et al. 2008; Atwell et al. 2012; Bonier 2012) and
morphological traits (Marnocha et al. 2011; Winchell et al.
2016, 2018; Putman et al. 2019) that are divergent from con-
specifics living in natural areas (i.e., urban-derived pheno-
types). As such, there is a growing body of evidence that
urban landscapes have resulted in phenotypic differentiation.
For example, urban-dwelling birds and lizards exhibit a de-
creased physiological stress response when compared to
natural-living counterparts (French et al. 2008; Atwell et al.
2012), while urbanized ants and lizards have increased their
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heat tolerance (Angilletta Jr et al. 2007; Campbell-Staton et al.
2020). Urban-derived morphology has been observed in sev-
eral species of lizard (French et al. 2008; Marnocha et al.
2011; Iglesias et al. 2012; Littleford-Colquhoun et al. 2017),
songbirds (Evans et al. 2009; Brown and Bomberger Brown
2013; Hutton and McGraw 2016), mice (Slábová and Frynta
2007), and spiders (Lowe et al. 2014). Despite these insights,
however, studies examining if urban-derived phenotypes are
arising through heritable adaptation remain relatively rare for
wildlife (but see: spider behavior, Kralj-Fišer and Schneider
2012; lizard morphology, Winchell et al. 2016; thermal toler-
ance, Diamond et al. 2017, Campbell-Staton et al. 2020; lizard
behavior, Baxter-Gilbert et al. 2019). As interest in this topic
increases, there is evidence of globally widespread divergent
phenotypes (Alberti et al. 2017; French et al. 2018; Ouyang
et al. 2018) andmarked genetic divergence between urban and
natural-living populations (Delaney et al. 2010; Harris et al.
2013; Littleford-Colquhoun et al. 2017) which supports the
idea that anthropogenic landscapes are capable of altering the
evolutionary trajectories of urban species (i.e., urban evolu-
tion; Johnson and Munshi-South 2017).

Comparative examinations of the morphology and perfor-
mance capacity of urban wildlife and their native counterparts
provides a promising avenue for determining the contributions
environmental factors and selection have on promoting urban-
derived phenotypes. There is a close association between en-
vironmental factors and morphology (Collette 1961; Arnold
1983) and measures of whole-organism performance can
demonstrate how variation in morphology, physiology, and
fitness interrelate (Huey et al. 1984; Garland Jr and Losos,
1994; Irschick et al. 2008; Lailvaux and Husak 2014). The
effects of habitat structure on morphology and performance
capacity have been well documented in lizards (Losos 1990;
Losos et al. 2000; Irschick et al. 2005; Kolbe and Losos 2005)
and performance capacity is a heritable trait in several species
(Garland et al. 1990; Le Galliard et al. 2004; Irschick et al.
2008). For example, variation in Anolis spp. body size and
limb morphology provides both sprinting and jumping perfor-
mance advantages relating to the size and shape of perching
substrates (Losos and Sinervo 1989; Losos 1990; Irschick
et al. 2005), which can drive morphological evolution during
periods of ecological change (Stuart et al. 2014).

Within an urban context, recent research has documented
urban-derived morphology in several species of lizard,
resulting in urban populations showing: an increase in limb
length (brown anoles, Anolis sagrei, Marnocha et al. 2011;
swamplands lashtails, Tropicagama temporalis, Iglesias
et al. 2012; Puerto Rican crested anoles, A. cristatellus,
Winchell et al. 2016, 2018), a decrease in limb length
(western fence lizards, Sceloporus occidentalis; Putman
et al. 2019), and an increase in body length (brown anoles,
Marnocha et al., 2011; swamplands lashtails, Iglesias et al.,
2012). These changes in body size and shape related to

urbanization are likely to impact a species’ performance ca-
pacity. For example, urbanization increases the amount of flat
impervious surfaces (hardscape) within a habitat (Dale and
Frank 2014; Barnett 2015) and longer limbs have been asso-
ciated with the use of broader surfaces in several lizard taxa
(Losos and Sinervo 1989; Kohlsdorf et al. 2001), including
urban hardscape (Marnocha et al. 2011; Iglesias et al. 2012).
Furthermore, the divergent morphology observed in urban-
ized Puerto Rican crested anoles not only provides an ecolog-
ically relevant performance advantage for running on natural
and anthropogenic substrates, but also represents a heritable
trait (Winchell et al. 2016, 2018). Increased sprint speed may
be ecologically important as it can enhance escape ability from
common mortality sources found in urban landscapes (e.g.,
domestic/novel predators, like cats and dogs; Koenig et al.
2002). Adaptation favoring specific morphological traits or
performance capabilities may also result in trade-offs (i.e.,
negative correlation between traits; Lailvaux and Husak
2014). As such, if an urban-derived morphology (e.g., longer
limbs) result in performance advantages in sprint speed or
clinging ability, then this may come at a cost to other traits
(e.g., endurance). Urban environments tend to have limited
suitable habitat and space, resulting in urban lizards having
decreased home range sizes (e.g., common wall lizards,
Podarcis muralis; Brown et al. 1995). With smaller home
ranges, territories to patrol, and distances between mates, se-
lection for endurance capacity may be relaxed; with increased
sprint speed and clinging ability on hard flat surfaces, related
to increased limb length, being favored instead.

We studied Australian water dragons (Intellagama
lesueurii) to test: 1) if urban-derived and therefore divergent,
morphological phenotypes (body size and limb lengths) have
arisen in urban environments in Sydney, Australia; 2) if they
are a result of selection or plasticity; and 3) if any altered
morphology may impact individual performance. Recent
studies have shown that water dragons from urban populations
are undergoing rapid genetic and morphological diversifica-
tion (Littleford-Colquhoun et al. 2017), as well as shifts in
innate behavior (Baxter-Gilbert et al. 2019) – suggesting this
species may be a promising model for studying urban evolu-
tion in lizards. We first examined if differences in adult and
hatchling dragon morphology exist between urban and natural
populations, and predicted that urban lizards would have
a larger body size and longer limbs; mirroring the trend seen
in other urbanized lizard taxa (Marnocha et al. 2011; Iglesias
et al. 2012; Winchell et al. 2016, 2018). If differences in mor-
phology are detectable at hatching it may suggest a heritable/
genetic mechanism behind urban-derived divergent traits. We
also experimentally reared hatchlings from urban and natural
origin populations within urban- and natural-style enclosures
(2 × 2 factorial design) for a year to test if any morphological
differences were related directly to either the individual’s or-
igin population type (heritable traits) or rearing environment
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(phenotypic plasticity).We predicted that if any urban-derived
morphology was a result of adaptation, then trait expression
would be significantly related to an individual’s origin popu-
lation type (urban vs natural). Last, we examined three mea-
sures of a dragon’s performance (sprint speed, endurance, and
clinging ability on concrete and tree bark) for the experimen-
tally reared yearling dragons. Based on our previous predic-
tion of increased limb length, we predicted that dragons from
urban-origin populations would show an increase in sprint
speed and clinging ability on anthropogenic surfaces, while
also having a decreased endurance capacity (due to known
trade-offs between spr in t speed and endurance;
Vanhooydonck et al. 2001, 2014; Lailvaux and Husak 2014).

Methods

Study species and field collection

Australian water dragons are large agamid lizards (maximum
snout-vent length: 304 mm, Thompson 1993) with a lifespan
of 28–40 years (Harlow and Harlow 1997; Griffiths 2006) and
a generation time of 5 years (Littleford-Colquhoun et al.
2017). Found across much of eastern Australia, they are com-
mon around bodies of freshwater and are typically associated
with forested riparian zones (Cogger 2014). They are also
found within several major cities and are frequently found in
many human-dominated landscapes (e.g., urban greenspaces,
botanical gardens, zoos, and backyards; Littleford-Colquhoun
et al. 2017; Baxter-Gilbert and Whiting 2018). These dragons
are adept at swimming, but they are also skilled at climbing
and sprinting (Baxter-Gilbert et al. 2018a).

We collected dragons from seven sites (four urban and
three natural) within a 50 km radius within the greater
Sydney area in New South Wales, Australia, from October
2015 to March 2017. Urban areas had a dense local human
population and a landscape that was widely human-modified
(e.g., concrete, gardens, roads, buildings). Natural areas, al-
though not free from human disturbance, were generally ri-
parian greenspaces consisting of waterways with wooded
shorelines, native vegetation, and a comparatively low human
presence (see Supplementary Material for site-specific
details).

All adult dragons were captured by hand or lizard lasso
(i.e., a loop of string with a sliding knot affixed to the end of
a pole), and gravid females were palpated (i.e., gently squeez-
ing their abdomen) to feel for the presence of shelled eggs. For
the field component of our study, adult females (n = 123 fe-
males) and males (n = 74) were weighed, measured (see be-
low), and released at their site of capture. During the nesting
season (October/November) gravid females were collected,
induced to oviposit with an injection of calcium gluconate
and synthetic oxytocin, and then post-oviposition released at

their site of capture (for details see Baxter-Gilbert et al.
2018b). Clutches of eggs were identically incubated in the
lab at a constant temperature of 26.5 °C (for details see
Baxter-Gilbert et al. 2018b) and, upon emerging, a random
subset of the hatchlings were measured (n = 200) and released
back at the mother’s site of capture. For the 2 × 2 factorial
experiment, we used a subset of the retained hatchlings
(n = 97) and they were housed on-site at Macquarie
University and regularly measured over their first year of life
(see details below).

Morphological measurements

We measured snout-vent length (SVL), upper forearm length
(UFL), lower forearm length (LFL), upper hindlimb length
(UHL), lower hindlimb length (LHL), and total hindlfoot
length (HFL), similar to previous water dragon research (see
Littleford-Colquhoun et al. 2017). All measurements (except
SVL) were made with digital Vernier calipers (± 0.01 mm),
and SVLwasmeasured with a clear plastic ruler (± 1mm). For
adults and released hatchlings, these morphometric measure-
ments were taken either post-capture or post-hatching (before
release), respectively. Hatchlings in the rearing treatments
were measured six times over their first year of life
(beginning after the hatching season and every 60 days
thereafter; Table S4). For analyses, we combine UFL and
LFL to get an overall measure of forearm length, as well as
UHL and LHL for an overall measure of hindlimb length.
Before statistical analysis we log-transformed all of these var-
iables (Lleonart et al. 2000); this ensured allometric relation-
ships were linear.

2 × 2 factorial experiment

We used outdoor enclosures at Macquarie University to rep-
licate the weather and climate they would naturally experience
around Sydney, Australia. Enclosures were 5 × 2.5 m and
constructed within a netted predator exclusion area. Natural-
style enclosures were outfitted with natural vegetation (e.g.,
grasses, weeds, and shrubs), wooden perches of varying di-
ameter (5–50 mm), a shaded area, and a 150 L plastic pool
(i.e., Fig. 1a). Urban-style enclosures were outfitted with hard,
flat surfaces (paving stones, concrete blocks, steel sheets, and
roofing tiles), eucalypt mulch, a shaded area, and the same
type of plastic pool as the natural treatment (i.e., Fig. 1b).
Both the natural- and urban-style enclosures were replicated
three times, for a total of six enclosures. Each enclosure held
individuals from natural origin populations (n = 8) and urban
origin populations (n = 8), for a total of 16 dragons per enclo-
sure. Siblings were split equally into natural- and urban-style
enclosures, thereby controlling for maternal and clutch effects.
Each enclosure experienced the same husbandry procedures
(e.g., provided with water and crickets, Acheta domesticus, ad
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libitum and having access to free-living invertebrates
inhabiting their enclosures). Dragons were housed in these
enclosures for their first year of life.

Performance measures

We recorded each dragon’s SVL (mm) (same methods as
above) before performance trials, and their body temperature
(± 0.1 °C) immediately prior to each individual’s performance
trial (following Baxter-Gilbert et al. 2018a). All performance
trials were conducted by the same researcher (JBG) to ensure
consistency.

Endurance and Sprint speed

Both endurance and sprint speed followed similar methods as
described in Noble et al. (2014), with the exception that
dragons were given a five day rest period between repeated
measures. Each measurement was repeated three times. The
sprint speed trial was measured on a 1.5 m running track lined
with a textured rubber mat, marked at 0.25 m intervals (Noble
et al. 2014). Dragons were placed at the starting line and
stimulated to run by pinching the base of the tail with a blue
nitrile gloved hand. We recorded sprint speed using a
Panasonic HD video camera (120 fps) and quantified the max-
imum speed during each trial by determining the shortest time
it took the individual to cross between the 0.25 m intervals,
which was then transformed into m/s.

The endurance trial immediately followed the sprint speed
trial and measured the time (s) it took a dragon to tire during
continuous running (Noble et al. 2014). The endurance arena

was constructed from a clear plexiglass box (1.1 × 0.08 m)
with an open bottom placed on a human treadmill set to a
fixed running speed of 1.0 km/h (Garland and Else 1987;
Noble et al. 2014). During the trial dragons were placed in
the first third (0.36 m) of the treadmill, so that as they tired
there would be enough time to pinch the base of the tail 10
consecutive times before the dragon was carried along the
track and pushed off the end (Garland and Else 1987;
Baxter-Gilbert et al. 2018a).

Clinging ability

We conducted two clinging trials with one rest day between
trials. A trial consisted of three measures of a dragon’s ability
to grip and hold on to the horizontal surface (i.e., a concrete
slab and a section of tree bark) while being pulled backward at
a steady pace until it detached. A Pesola spring dynamometer
fitted with a slide marker to recordmaximum force (N; medio-
line, model #40006) was attached to the dragon by a 0.5 m
length of cotton string tied in a harness anterior to the pelvic
girdle. The direction of the pulling was kept level to the sub-
strate (preventing upward and downward pulling forces) and
directly to the rear of the dragon (preventing lateral forces).
The testing arenas were 0.6 × 0.2 m with a 0.3 m black plastic
wall around three of the four sides. The concrete base was an
aerated concrete brick (Hebel, PowerBlock). The tree bark
base was a 0.6 × 0.2 m section of turpentine (Syncarpia
glomulifera), a tree species found throughout the Australian
water dragon’s distribution. Although both flat surfaces, this
measure examined the dragon’s ability to adhere to natural
and anthropogenic substrates.

Fig. 1 The setup for the ‘natural’
(a) and ‘urban’ (b) treatments. All
replicates were identical in design

Urban Ecosyst



Statistical analyses

All statistical tests were conducted in R version 3.2.3 (R Core
Team, 2016). Before starting analyses, we explored each
dataset following the protocol outlined in Zuur et al. (2010).
We did not find any unexplainable outliers or strong collin-
earity between our predictor variables. For all models, prior to
interpretation, we verified the assumptions of normality and
homoscedasticity of residuals. Data are presented as mean ±
standard error (SE) in the text, unless otherwise specified, and
α was set at 0.05 for all models.

Morphology: Adults

We measured 197 adult dragons (123 females and 74 males)
from seven sites in the greater Sydney area (four urban and
three natural; for details see Supplementary Material). We
used linear mixed effect models (LMMs) to examine differ-
ences in morphology between urban and natural populations
with the R package ‘lme4’ (Bates et al. 2015). Identical LMMs
were performed separately for both sexes, because this species
is sexually dimorphic (Baird et al. 2012). Supporting this, in
preliminary analyses, we found that males were larger in SVL
than females (β = 0.083, SE = 0.005, t2, 192 = 17.353,
p < 0.001). Also, males were larger than females in forearm
length (β = 0.029, SE = 0.005, t2, 191 = 5.336, p < 0.001),
hindlimb length (β = 0.034, SE = 0.006, t2, 191 = 5.944,
p < 0.001), and hindfoot length (β = 0.040, SE = 0.005, t2,
191 = 7.911, p < 0.001) when controlling for SVL (see
Table S1 for model outputs). So, separately for each sex, we
used LMMs to examine differences in SVL (response vari-
able) between origin populations (categorical variable with
two levels: urban or natural), and these models included a
random intercept of site to incorporate dependency among
observations of lizards from the same location. Models exam-
ining differences in the other morphological traits (forearm,
hindlimb, and hindfoot lengths) contained the same fixed and
random factors, but also included the additional fixed factor of
SVL to standardize this variable with respect to body length.

Morphology: Hatchlings

We sampled 200 hatchlings from 40 unique clutches across
four populations (two urban [n = 84] and two natural
[n = 116]). Models examining differences in hatchling SVL
included the fixed factor of origin population (categorical with
two levels: urban or natural), and the random intercepts of site
and clutch to incorporate dependency among observations of
lizards from the same location or the same clutch, respective-
ly. Models examining differences in the other morphological
traits (forearm, hindlimb, and hindfoot lengths) contained the
same fixed and random factors, but also included the

additional fixed factor of SVL to standardise the response
variable with respect to body length.

Morphology: 2 × 2 factorial experiment

Juvenile dragons were sampled after approximately one year
in captivity. On average, juveniles sampled were 371.53 days
old (SE = 0.99 days, range = 351 to 386 days). We were able
to sampled 77 yearlings from 23 unique clutches from six
populations (three urban [n = 38] and three natural [n = 39]),
which were raised in a total of six enclosures (three natural-
and three urban-style). Linear mixed effects models that ex-
amined differences in juvenile SVL included the fixed factors
of age (days; continuous), origin population (categorical with
two levels: urban and natural), and rearing treatments (cate-
gorical with two levels: urban and natural). An interaction
effect between origin population and rearing treatments was
also included in models. The model also included random
intercepts of clutch, site, and rearing enclosure to incorporate
dependency among observations from the same clutch, the
same location, and the same captive rearing enclosure, respec-
tively. Models examining differences in yearling morpholog-
ical traits (forearm, hindlimb, and hindfoot length) contained
the same fixed and random factors, but also included the ad-
ditional fixed factor of SVL to standardize the response vari-
able with respect to body length.

If the interaction between origin population and rearing
treatment was significant, then we used the function ‘lsmeans’
in the ‘lsmeans’ R package (Lenth 2016) to statistically com-
pare among all origin population and rearing treatment com-
binations (6 comparisons in total). The p-values generated for
these comparisons were corrected using Tukey’s HSD multi-
plicity adjustment (Lenth 2016). If the interaction effect was
not significant, then it was removed from the model and the
model was re-run in order to allow interpretation of main
effects.

Performance: 2 × 2 factorial experiment

The performance trials were limited to a subset of the yearling
dragons within our experiment. In total we sampled perfor-
mance from 59 yearlings from 22 unique clutches and from
six sites (three urban [n = 30] and three natural [n = 29]) that
were raised in a total of six enclosures (three natural- and three
urban-style). We examined if dragon performance metrics
varied across experimental treatments using four separate,
identical LMMs for each response variable. The response var-
iables were endurance (s), sprint speed (m/s), clinging force on
concrete (N), and clinging force on tree bark (N).We analyzed
clinging ability separately for each substrate, because it was
significantly lower on concrete than tree bark (Table S5). We
included repeated measures of each performance trait, instead
of using only maximal values, within our LMMs to account
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for within-individual variation in our study (Careau and
Wilson 2017; Baxter-Gilbert et al. 2018a).

Fixed factors were trial order (continuous), SVL (continu-
ous, log-transformed), body temperature (continuous), origin
population (categorical with two levels: urban and natural),
rearing treatment (categorical with two levels: urban and nat-
ural), as well as the interaction between origin population and
rearing treatment. Post-hoc assessment and treatment of the
interaction effect was the same as described above. There
were significant trial order effects in our data (specifically
for endurance and sprint speed; Tables S7 and S8), potentially
due to training effects, and inclusion of them in our models
statistically controlled for this potentially confounding vari-
able (Baxter-Gilbert et al. 2018a). Models also included the
random intercepts of juvenile identity, clutch, site, and rearing
enclosure to incorporate dependency among observations of
the same individual, clutch, location, and captive rearing en-
closure, respectively.

Results

Morphology: Adults

Females did not significantly differ in SVL (β = −0.049, SE =
0.049, t2, 120 = −0.987, p = 0.324) between urban and natural
sites. Female forearm length (β = 0.003, SE = 0.005, t2, 119 =
0.591, p = 0.555), hindlimb length (β = 0.029, SE = 0.035, t2,
119 = 0.810, p = 0.418), and hindfoot length (β = 0.040, SE =
0.044, t2, 119 = 0.900, p = 0.370), relative to SVL, were not
significantly different between natural and urban sites. All
morphological traits (forearm, hindlimb, and hindfoot length)
were significantly and positively related to SVL (see model
output in Table S2).

Contrary to our prediction, male SVL was smaller in urban
than natural populations (Table 1, Fig. 2b). Based on a sum-
mary of raw data, urban males were smaller by 10.3 mm (av-
erage SVL for urban males = 222.3 ± 3.4 mm, and natural
males = 232.6 ± 2.5 mm) than males from natural habitats.
Male forearm, hindlimb, and hindfoot length, relative to
SVL, did not differ between urban and natural populations
(Table 1). The models for limb and foot lengths controlled
for SVL, since SVL was significantly and positively related
to all these traits (Table 1). This being said, because males in
urban populations were significantly smaller than males in
natural populations, this trend also applied to the absolute
length of forearms, hindlimbs and hindfeet of dragons. In fact,
based on raw absolute values, urban male forearms,
hindlimbs, and hindfeet were smaller, on average by
0.485 mm (0.7% decrease), 3.337 mm (2.9% decrease), and
3.381 mm (4.3% decrease) respectively, compared to natural-
living males.

Morphology: Hatchlings

Urban hatchlings had a smaller SVL at birth than hatchlings
from natural populations (Table 2, Fig. 2a). Hatchling forearm
and hindlimb length, relative to SVL, was larger in urban than
natural populations (Table 2). Hatchling hindfoot length, rel-
ative to SVL, did not differ between urban and natural popu-
lations (Table 2). The models for limb and foot lengths con-
trolled for SVL, since SVL was significantly and positively
related to all these traits (Tables 2).

Morphology: 2 × 2 factorial experiment

Yearling water dragon SVL was not significantly related to
origin population, but dragons raised in urban treatments had
smaller SVLs than those raised in natural treatments (Table 4).
Based on a summary of raw data, yearlings raised in urban
enclosures were smaller by 4.3 mm than yearlings raised in
natural enclosures (average SVL for urban-reared yearlings =
88.1 ± 1.3 mm, and natural-raised yearlings = 83.8 ± 1.0 mm;
Table 3). The interaction effect between origin population and
rearing treatment was not significant (β = 0.004, SE = 0.011,
t4,67 = 0.397, p = 0.692; Table 4).

Yearling forearm, hindlimb, and hindfoot length, relative to
SVL, also did not differ significantly between origin popula-
tion or rearing treatments, and there was no significant inter-
action between these factors either (Table S3). All models
controlled for dragon age, since age was significantly and
positively related to SVL (Table 4), but age was not
signficantly related to any other morphological trait
(Table S3). The models for limb and foot lengths
also controlled for SVL, and SVL was significantly and pos-
itively related to all these traits (see model outputs in
Table S3). This being said, as yearlings in urban enclosures
were significantly smaller than yearlings in natural enclosures,
this trend also applies to the absolute length of forearms,
hindlimbs, and hindfeet (Table 3). In fact, based on raw abso-
lute values, urban-raised yearling forearms, hindlimbs, and
hindfeet were smaller, on average, by 1.083 mm (4.1% de-
crease), 1.932 mm (4.5% decrease), and 1.413 mm (4.4%
decrease) respectively, than those of natural-raised yearlings.

Performance: 2 × 2 factorial experiment

Dragon endurance (Table S6), sprint speed (Table S7), and
clinging ability on concrete (Table S8) and tree bark
(Table S9) did not differ significantly between origin popula-
tions, rearing treatments, and in all cases there was not a sig-
nificant interaction between these two factors. All perfor-
mance measures were significantly and positively related to
dragon SVL (Table S6-S9).
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Table 1 Outcomes of linear
mixed effect models examining
differences in male Australian
water dragon morphological traits
(from top to bottom: snout-vent,
forearm, hindlimb, and hindfoot
lengths) between urban and
natural populations. All
morphological traits were log-
transformed before analyses.
Model estimates (β) of fixed ef-
fects are presented with their cor-
responding standard errors (SE),
variance estimates (σ2) are sup-
plied for residuals and random
effects. Test statistics (t) are pre-
sented and all significant values
(p < 0.05) are presented in bold.
Reference levels for categorical
variables are given in brackets
following the variable name

Variable Names Model Output

Snout-vent Length Fixed Effects β SE t p

Intercept (Natural) 2.366 0.007 328.571 <0.001

Population (Urban) −0.021 0.010 −2.155 0.031

Random Effects σ2

Site <0.001

Residuals 0.001

Forearm Length Fixed Effects β SE t p

Intercept (Natural) −0.338 0.164 −2.058 0.040

Snout-vent Length 0.922 0.069 13.288 <0.001

Population (Urban) 0.012 0.008 1.519 0.129

Random Effects σ2

Site <0.001

Residuals <0.001

Hindlimb Length Fixed Effects β SE t p

Intercept (Natural) −0.069 0.152 −0.452 0.651

Snout-vent Length 0.903 0.064 14.066 <0.001

Population (Urban) 0.002 0.009 0.169 0.866

Random Effects σ2

Site <0.001

Residuals <0.001

Hindfoot Length Fixed Effects β SE t p

Intercept (Natural) 0.378 0.151 2.502 0.012

Snout-vent Length 0.640 0.064 10.041 <0.001

Population (Urban) −0.004 0.008 −0.507 0.612

Random Effects σ2

Site <0.001

Residuals <0.001

Fig. 2 Urban populations (grey
circles) of (a) hatchling and (b)
adult male Australian water
dragons have smaller mean snout-
vent lengths (SVL) than natural
populations (green circles). SVL
was log-transformed before sta-
tistical analyses. Circles are pre-
dicted fitted means, and error bars
reflect predicted 95% confidence
intervals
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Table 2 Outcomes of linear
mixed effect models examining
differences in hatchling
Australian water dragon
morphological traits (from top to
bottom: snout-vent, forearm,
hindlimb, and hindfoot lengths)
between urban and natural
populations. All morphological
traits were log-transformed before
analyses. Model estimates (β) of
fixed effects are presented with
their corresponding standard er-
rors (SE), variance estimates (σ2)
are supplied for residuals and
random effects. Test statistics (t)
are presented and all significant
values (p < 0.05) are presented in
bold. Reference levels for cate-
gorical variables are given in
brackets following the variable
name

Variable Names Model Output

Snout-vent Length Fixed Effects β SE t p

Intercept (Natural) 1.680 0.004 462.61 <0.001

Population (Urban) −0.020 0.005 −3.683 <0.001

Random Effects σ2

Site <0.001

Clutch <0.001

Residuals <0.001

Forearm Length Fixed Effects β SE t p

Intercept (Natural) −0.060 0.132 −0.456 0.649

Snout-vent Length 0.725 0.078 9.240 <0.001

Population (Urban) 0.019 0.007 2.598 0.009

Random Effects σ2

Site <0.001

Clutch <0.001

Residuals <0.001

Hindlimb Length Fixed Effects β SE t p

Intercept (Natural) −0.083 0.125 −0.663 0.507

Snout-vent Length 0.860 0.074 11.566 <0.001

Population (Urban) 0.018 0.004 4.309 <0.001

Random Effects σ2

Site <0.001

Clutch <0.001

Residuals <0.001

Hindfoot Length Fixed Effects β SE t p

Intercept (Natural) 0.093 0.096 0.973 0.331

Snout-vent Length 0.717 0.057 12.551 <0.001

Population (Urban) 0.003 0.005 0.647 0.518

Random Effects σ2

Site <0.001

Clutch <0.001

Residuals <0.001

Table 3 Average ± standard error
of raw (i.e., not log-transformed)
(a) morphological traits and (b)
performance measures of yearling
Australian water dragons for each
origin population and rearing
treatment combination (urban or-
igin with urban rearing [uU], nat-
ural origin with urban rearing
[nU], natural origin with natural
rearing [nN], and urban origin
with natural rearing [uN]) within
our 2 × 2 factorial experiment

(a) Morphological Traits
(mm)

nN

(n = 17)

nU

(n = 21)

uN

(n = 21)

uU

(n = 18)

Snout-vent Length 90.353 ± 1.867 85.667 ± 1.308 86.286 ± 1.815 81.556 ± 1.534

Forearm Length 26.735 ± 0.542 25.958 ± 0.655 25.820 ± 0.522 24.201 ± 0.527

Hindlimb Length 44.149 ± 0.971 42.224 ± 0.783 42.140 ± 0.778 39.804 ± 0.754

Hindfoot Length 33.070 ± 0.693 32.009 ± 0.588 31.695 ± 0.609 29.601 ± 0.564

(b) Performance Measures nN

(n = 14)

nU

(n = 16)

uN

(n = 15)

uU

(n = 14)

Endurance (s) 138.810 ± 4.925 126.971 ± 5.040 127.136 ± 4.100 117.141 ± 4.525

Sprint Speed (m/s) 1.202 ± 0.027 1.252 ± 0.037 1.161 ± 0.028 1.204 ± 0.032

Concrete – Clinging Ability (N) 2.860 ± 0.098 2.613 ± 0.088 2.734 ± 0.119 2.508 ± 0.104

Bark – Clinging Ability (N) 3.383 ± 0.090 3.194 ± 0.098 3.114 ± 0.129 2.880 ± 0.123
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Discussion

Urban Australian water dragons were morphologically dis-
tinct from their natural-living counterparts. As we predicted,
urban hatchlings had proportionally longer limbs, however,
contrary to our expectations, urban hatchlings and adult males
were smaller (SVL) when compared to natural populations.
Adult females showed no significant morphological differ-
ences between urban and natural populations. These findings
were generally antithetical to our predictions (i.e.,
representing smaller urban body sizes), but also suggest that
although urban-derived morphology was innate at hatching,
either through genetic or maternal effects, the continued ex-
pression over time required additional factors (e.g., sex- and/
or habitat-specific influences across ontogeny).

Our 2 × 2 factorial experiment supports the assertion that,
after hatching, water dragonmorphology is likely mediated by
environmental factors. After being reared for a year in our
experimental environment, individuals from urban-style en-
closures were significantly smaller in body size (SVL) com-
pared to those raised in natural-style enclosures, irrespective
of their origin population. This suggests that the persistence of
urban-derived morphology is related to environmental cues
(e.g., increased broad, flat, or hard surfaces) triggering pheno-
typic plasticity for a smaller overall body size. Phenotypic
plasticity of body size and shape related to differences in de-
velopmental environment or ecological events has been pre-
viously documented in lizards, like anoles (Anolis spp., Losos
et al. 2000; Donihue et al. 2018), common lizards (Lacerta
vivipara, Sorci et al. 1996), eastern garden lizards (Calotes
versicolor, Ammanna et al. 2018), and eastern fence lizards

(Sceloporus undulatus, Wild and Gienger 2018). Many of
these studies observed changes in limb morphology, which
we did not observe in our study, but rather, we saw an
urban-related reduction in body size. Our finding is contrary
to other differences between urban-dwelling lizards and their
natural-living counterparts (e.g., brown anoles, Marnocha
et al., 2011; swamplands lashtails, Iglesias et al., 2012); how-
ever, these studies were not able to determine if their observed
increase in urban body size was related to natural selection,
phenotypic plasticity, or ecological factors (e.g., increased re-
sources or longevity). If phenotypic plasticity is a major driver
of divergent body size in water dragons across ontogeny, as
suggested by our 2 × 2 factorial experiment, then this raises
three key questions: 1) why does it result in a reduced body
size for adult males and not females; 2) does it have a func-
tional purpose; and 3) how does this relate to the presence of
divergent body size at the time of hatching (i.e., without en-
vironmental cues)?

In wild adult water dragons the presence of urban-derived
morphology differs demographically, which may be related to
sex-specific differences in habitat use and social behavior
across ontogeny (Baird et al., 2012, Gardiner et al., 2014;
Strickland et al. 2014; Piza-Roca et al. 2018). Adult water
dragons are sexually dimorphic, with a male bias toward a
longer SVL, heavier mass, enlarged head, and sex-specific
differences in social behavior (Baird et al. 2012, 2014;
Strickland et al. 2014). Males are often combative and defend
territories or adopt a satellite (non-territorial) reproductive tac-
tic (Baird et al. 2012, 2014). These aggressive interactions are
energetically demanding and likely come with a substantial
physiological cost (Baird et al. 2014). Female water dragons

Table 4 Outcomes of linear mixed effect models examining difference
in yearling Australian water dragon snout-vent length between origin
populations and rearing treatments. Snout-vent length was 1og-
transformed before analyses. Model estimates (β) of fixed effects are
presented with their corresponding standard errors (SE), variance esti-
mates (σ2) are supplied for residuals and random effects. Test statistics

(t) are presented and all significant values (p < 0.05) are presented in bold.
Reference levels for categorical variables are given in brackets following
the variable name. The interaction between origin population and rearing
treatment was not significant (β = 0.004, SE = 0.011, t4,67 = 0.397, p =
0.692), and it was removed and the model re-run. This is indicated with
a “na” below

Variable Names Model Output

Fixed Effects β SE t p

Intercept (Natural Population, Natural Treatment) 1.207 0.198 6.088 <0.001

Age 0.002 0.001 3.723 <0.001

Origin Population (Urban) -0.021 0.014 -1.500 0.134

Rearing Treatment (Urban) -0.019 0.006 -3.401 0.001

Origin Population*Rearing Treatment (Urban Population, Urban Treatment) na na na na

Random Effects σ2

Site <0.001

Clutch <0.001

Housing Enclosure <0.001

Residuals 0.001
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do not defend territories, although they can be aggressive, and
tend to be more aggregative, with home range’s frequently
overlapping with multiple males and females (Strickland
et al. 2014). Female water dragons also tend to form strong
non-random social associations between individuals (i.e.,
strong social bonds; Piza-Roca et al. 2019). Furthermore, re-
ductions in female body size may be constrained by the need
to maintain a natural optimum for egg production, however
more research into urban reproductive biology and how this
can impact morphology is needed. Given these ecological and
behavioral sex-specific differences, it may be expected that
phenotypic plasticity would mediate the expression of
urban-derived morphology differently. Similar findings, albeit
sex-reversed, have been seen in green anoles (Anolis
carolinensis), whereby females exhibit a stronger plastic re-
sponse in relation to habitat type (i.e., longer limbs in areas
with wider perches) compared to males; a finding seen in both
wild populations (Dill et al. 2013) and laboratory-reared indi-
viduals (Kolbe and Losos 2005). Previous research on
Australian water dragons has also identified sex-specific dif-
ferences in adult body shape (SVL, limb length, and head
shape) between isolated urban populations, which were attrib-
uted to localized genetic divergences (Littleford-Colquhoun
et al. 2017). Our results do not counter the assertion that rapid
localized adaptation is occurring within some urban water
dragon populations, but rather serve to outline the complex
nature of how different urban areas impact specific popula-
tions through a suite of potential mechanisms, including rapid
genetic differentiation (Littleford-Colquhoun et al. 2017),
phenotypic plasticity (our study), or possibly a combination
of both (e.g., heritable phenotypic plasticity, Lande 2009;
Chevin and Lande 2011) depending on the location and
population.

Habitat-related phenotypic plasticity in lizard morphology
has typically been associated with conferring performance
advantages within the novel or altered landscape (Losos
et al. 2000; Dill et al. 2013; Winchell et al. 2018), yet we were
unable to detect any significant difference in sprint speed,
endurance, or clinging ability on tree bark or concrete between
our experimentally-reared treatments of yearling dragons.
Although we found this surprising, these findings may have
stemmed from several factors relating to limb morphology,
sex, or experimental design. Our 2 × 2 factorial experiment
did result in altered body size for urban dragons, yet we did
not see a difference in limbmorphology; which has previously
been attributed to altered performance capacities in lizards
(Losos et al. 2000; Dill et al. 2013; Winchell et al. 2018).
Furthermore, a factor that could limit the interpretation of
results from our experimentally reared yearlings is their sex.
Unfortunately, we did not determine the sex of the yearlings;
as sexual maturity in Australian water dragons occurs at ap-
proximately 4–5 years of age (Thompson 1993; Harlow and
Harlow 1997; Hosking 2010). If we had been able to tease

apart variances in performance capacity related to sex it may
have provided notable differences - or at least clearer insights.
We recommend future work identify juvenile sex as early as
possible, regardless of the age of sexual maturity. Lastly, there
is the distinct possibility that the metrics we used to measure
performance capacity (sprint speed, endurance, and clinging
ability) were not the attributes that a reduction in urban body
size was acting upon. Instead, the reduced body size seen in
urban-reared yearlings may be related to factors such as ther-
mal biology (Sinervo and Adolph 1994; Sorci et al. 1996) or
water loss (Gunderson et al. 2011), which may be impacted
substantially in urban landscapes (e.g., altered thermal re-
gimes and water availability). We suggest further investiga-
tions also examine the potential physiological factors that may
explain a plastic response favoring a smaller dragon body size
in urban landscapes, particularly in relation to the urban heat
island effect (i.e., reduced vegetation and increased hardscape
increasing urban environmental temperatures; Arnfield 2003).

While the experimentally reared yearlings provided an ex-
planation for the reduced body size of adult males (phenotypic
plasticity), it does not directly address the reduced body size
and proportionally longer limbs observed in urban water drag-
on hatchlings (innate trait). Since this trend is restricted to the
hatchling life-stage - being absent at one year of age (as seen
in our 2 × 2 factorial experiment) - if it is adaptive, this phe-
notype may only be advantageous over this short time period;
or else it maymerely be a by-product of parental effects driven
by urban ecological factors (e.g., diet, physiological stress,
pollution, thermal landscape, Shine and Downes 1999; de
Solla et al. 2002; Lorioux et al. 2012). Based on the inferences
frommark-recapture data (Thompson 1993), large clutch sizes
(up to 17 eggs, Baxter-Gilbert unpubl. data) and frequency (up
to three clutches per year, Doody et al. 2006), and a wide array
of known predators (Doody et al. 2014), we can predict that
juvenile water dragon mortality rates are reasonably high. As
such, urban dragons experiencing altered ecosystems (e.g.,
novel predators and habitat structure) may have undergone
differential selective pressures or maternal effects (e.g.,
physiological priming of offspring; Shine and Downes
1999) resulting in smaller SVL and proportionally longer
limbs during this early life-stage to better evade predation. If
this early-life phenotype is adaptive it may be temporally lim-
ited. Differences in limb-body proportions can change during
development because of different physiological and kinematic
constraints arising across ontogeny. For example, American
alligators (Alligator mississippiensis) decrease proportional
limb length across ontogeny, as well as adjusting gait and limb
posture, to compensate for the challenges of increased load
stress on bones (Allen et al. 2010). If this is the case for urban
water dragons, then the advantages of longer limbs may only
be effective for smaller age-classes; with the costs of this trait
outweighing the benefits as they mature. An alternative is that
the differences seen in urban hatchling morphology are not
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adaptive, but rather a result of circumstantial ecological ma-
ternal effects, such as diet. Investigations of other urban water
dragon populations revealed a high fat and plant rich diet
(from gut microbiome profiling) and incorporating anthropo-
genic food sources rich in protein (from stable isotope analy-
sis, Littleford-Colquhoun et al. 2019a). These urban dragons
also had several gut microbial taxa associated with obesity,
which were occurring at a much higher frequency and abun-
dance within urban populations compared to their natural con-
specifics (Littleford-Colquhoun et al. 2019a). Although the
maternal effects of anthropogenically-subsidized maternal di-
ets on offspring morphology are widely understudied for rep-
tiles, previous research has seen maternal diet quantity or
quality affect offspring body size, growth, and performance
capacity (Sorci and Clobert 1997; Warner and Lovern 2014;
Wang et al. 2017; Horváth et al. 2019). Overall, we are unable
to clearly delineate the mechanism driving the innate expres-
sion of the urban water dragon hatchling morphology, wheth-
er it be fixed and heritable or a result of adaptive or circum-
stantial maternal effects. We recommend future studies exam-
ine if these traits (shorter SVL and longer limbs at hatching)
are repeatable over multiple generations in lab-reared colo-
nies, as well as the impact urbanized diets have on water
dragon physiology and reproduction.

Conclusion

In the face of rapid ecological change, such as urbanization,
plastic responses may provide a stopgap allowing populations
to temporarily persist under urban pressure, creating time for
natural selection to act upon adaptive heritable traits (Price
et al. 2003; Winchell et al. 2016). Our study provides support
for the assertion that phenotypic plasticity can result in urban-
derived morphological phenotypes in lizards - including sex-
specific differences in expression occurring across ontogeny
(Kolbe and Losos 2005; Dill et al. 2013). However, our study
has also generated a suite of new questions. We suggest urban
research further explore changes in urban-derived morpholo-
gy across ontogeny and in different ecological contexts (e.g.,
urban vs natural); as body shape can relate to habitat-use and
diet, which often varies across an individual’s lifetime
(Mushinsky et al. 1982, Irschick et al. 2000, Bouchard and
Bjorndal 2005, Arthur et al. 2008, Purwandana et al. 2016).
Also, additional research should focus on how interactions
between sexual dimorphism and natural selection (Littleford-
Colquhoun et al. 2019b) impact urban evolution and urban-
derived phenotypes. Our research builds on the growing idea
that although urbanization is a key factor imperiling biodiver-
sity, there are certain wildlife populations capable of adapting
to an increasingly human world.
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