737 research outputs found

    Genetic and demographic vulnerability of adder populations: Results of a genetic study in mainland Britain

    Get PDF
    Genetic factors are often overlooked in conservation planning, despite their importance in small isolated populations. We used mitochondrial and microsatellite markers to investigate population genetics of the adder (Vipera berus) in southern Britain, where numbers are declining. We found no evidence for loss of heterozygosity in any of the populations studied. Genetic diversity was comparable across sites, in line with published levels for mainland Europe. However, further analysis revealed a striking level of relatedness. Genetic networks constructed from inferred first degree relationships suggested a high proportion of individuals to be related at a level equivalent to that of half-siblings, with rare inferred full-sib dyads. These patterns of relatedness can be attributed to the high philopatry and low vagility of adders, which creates high local relatedness, in combination with the polyandrous breeding system in the adder, which may offset the risk of inbreeding in closed populations. We suggest that reliance on standard genetic indicators of inbreeding and diversity may underestimate demographic and genetic factors that make adder populations vulnerable to extirpation. We stress the importance of an integrated genetic and demographic approach in the conservation of adders, and other taxa of similar ecology

    On the criticality of inferred models

    Full text link
    Advanced inference techniques allow one to reconstruct the pattern of interaction from high dimensional data sets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to a phase transition. On one side, we show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher Information) is directly related to the model's susceptibility. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. On the other, this region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time-scales naturally yield models which are close to criticality.Comment: 6 pages, 2 figures, version to appear in JSTA

    Genotyping Validates the Efficacy of Photographic Identification in a Capture-Mark-Recapture Study Based on the Head Scale Patterns of the Prairie Lizard (\u3ci\u3eSceloporus consobrinus\u3c/i\u3e)

    Get PDF
    Population studies often incorporate capture‐mark‐recapture (CMR) techniques to gather information on long‐term biological and demographic characteristics. A fundamental requirement for CMR studies is that an individual must be uniquely and permanently marked to ensure reliable reidentification throughout its lifespan. Photographic identification involving automated photographic identification software has become a popular and efficient noninvasive method for identifying individuals based on natural markings. However, few studies have (a) robustly assessed the performance of automated programs by using a double‐marking system or (b) determined their efficacy for long‐term studies by incorporating multi‐year data. Here, we evaluated the performance of the program Interactive Individual Identification System (I3S) by cross‐validating photographic identifications based on the head scale pattern of the prairie lizard (Sceloporus consobrinus) with individual microsatellite genotyping (N = 863). Further, we assessed the efficacy of the program to identify individuals over time by comparing error rates between within‐year and between‐year recaptures. Recaptured lizards were correctly identified by I3S in 94.1% of cases. We estimated a false rejection rate (FRR) of 5.9% and a false acceptance rate (FAR) of 0%. By using I3S, we correctly identified 97.8% of within‐year recaptures (FRR = 2.2%; FAR = 0%) and 91.1% of between‐year recaptures (FRR = 8.9%; FAR = 0%). Misidentifications were primarily due to poor photograph quality (N = 4). However, two misidentifications were caused by indistinct scale configuration due to scale damage (N = 1) and ontogenetic changes in head scalation between capture events (N = 1). We conclude that automated photographic identification based on head scale patterns is a reliable and accurate method for identifying individuals over time. Because many lizard or reptilian species possess variable head squamation, this method has potential for successful application in many species

    Self-disclosure in criminal justice: what form does it take and what does it achieve?

    Get PDF
    Self-disclosure, the act of a therapist revealing something about themselves in the context of a professional relationship, has been linked with higher levels of effectiveness when used by correctional workers. However, it is poorly defined in both criminal justice policy and criminological research which has resulted in a lack of understanding about the potential risks and benefits to practice and practitioners. This article uses literature from other fields (namely, social work, counselling and psychotherapy) to lay out what forms self-disclosure might take in the field of criminal justice. The article presents data that were generated as part of a larger project on emotional labour in probation practice in England. It analyses these data to argue that self-disclosure is used in two principle ways: in order to create and enhance a therapeutic relationship and in a more correctional way which is focused on criminogenic risk and need. We conclude by arguing that future research which seeks to identify a link between certain skills and effective outcomes needs to start with a much stronger definition of such skills as, otherwise, any effects are likely to be lost

    Search for the electric dipole excitations to the 3s1/2[21+31]3s_{1/2} \otimes [2^{+}_{1} \otimes 3^{-}_{1}] multiplet in 117^{117}Sn

    Full text link
    The odd-mass 117^{117}Sn nucleus was investigated in nuclear resonance fluorescence experiments up to an endpoint energy of the incident photon spectrum of 4.1 MeV at the bremsstrahlung facility of the Stuttgart University. More than 50 mainly hitherto unknown levels were found. From the measurement of the scattering cross sections model independent absolute electric dipole excitation strengths were extracted. The measured angular distributions suggested the spins of 11 excited levels. Quasi-particle phonon model calculations including a complete configuration space were performed for the first time for a heavy odd-mass spherical nucleus. These calculations give a clear insight in the fragmentation and distribution of the E1E1, M1M1, and E2E2 excitation strength in the low energy region. It is proven that the 11^{-} component of the two-phonon [21+31][2^{+}_{1} \otimes 3^{-}_{1}] quintuplet built on top of the 1/2+1/2^{+} ground state is strongly fragmented. The theoretical calculations are consistent with the experimental data.Comment: 10 pages, 5 figure

    Strong fragmentation of low-energy electromagnetic excitation strength in 117^{117}Sn

    Full text link
    Results of nuclear resonance fluorescence experiments on 117^{117}Sn are reported. More than 50 γ\gamma transitions with Eγ<4E_{\gamma} < 4 MeV were detected indicating a strong fragmentation of the electromagnetic excitation strength. For the first time microscopic calculations making use of a complete configuration space for low-lying states are performed in heavy odd-mass spherical nuclei. The theoretical predictions are in good agreement with the data. It is concluded that although the E1 transitions are the strongest ones also M1 and E2 decays contribute substantially to the observed spectra. In contrast to the neighboring even 116124^{116-124}Sn, in 117^{117}Sn the 11^- component of the two-phonon [21+31][2^+_1 \otimes 3^-_1] quintuplet built on top of the 1/2+^+ ground state is proved to be strongly fragmented.Comment: 4 pages, 3 figure

    The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager

    Get PDF
    In this article, we describe the MIRI Imager module (MIRIM), which provides broad-band imaging in the 5 - 27 microns wavelength range for the James Webb Space Telescope. The imager has a 0"11 pixel scale and a total unobstructed view of 74"x113". The remainder of its nominal 113"x113" field is occupied by the coronagraphs and the low resolution spectrometer. We present the instrument optical and mechanical design. We show that the test data, as measured during the test campaigns undertaken at CEA-Saclay, at the Rutherford Appleton Laboratory, and at the NASA Goddard Space Flight Center, indicate that the instrument complies with its design requirements and goals. We also discuss the operational requirements (multiple dithers and exposures) needed for optimal scientific utilization of the MIRIM.Comment: 29 pages, 9 figure

    Towards ensemble asteroseismology of the young open clusters Chi Persei and NGC 6910

    Get PDF
    As a result of the variability survey in Chi Persei and NGC6910, the number of Beta Cep stars that are members of these two open clusters is increased to twenty stars, nine in NGC6910 and eleven in Chi Persei. We compare pulsational properties, in particular the frequency spectra, of Beta Cep stars in both clusters and explain the differences in terms of the global parameters of the clusters. We also indicate that the more complicated pattern of the variability among B type stars in Chi Persei is very likely caused by higher rotational velocities of stars in this cluster. We conclude that the sample of pulsating stars in the two open clusters constitutes a very good starting point for the ensemble asteroseismology of Beta Cep-type stars and maybe also for other B-type pulsators.Comment: 4 pages, Astronomische Nachrichten, HELAS IV Conference, Arecife, Lanzarote, Feb 2010, submitte

    Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo

    Get PDF
    We discuss Bayesian inferential procedures within the family of instrumental variables regression models and focus on two issues: existence conditions for posterior moments of the parameters of interest under a flat prior and the potential of Direct Monte Carlo (DMC) approaches for efficient evaluation of such possibly highly non-elliptical posteriors. We show that, for the general case of m endogenous variables under a flat prior, posterior moments of order r exist for the coefficients reflecting the endogenous regressors' effect on the dependent variable, if the number of instruments is greater than m +r, even though there is an issue of local non-identification that causes non-elliptical shapes of the posterior. This stresses the need for efficient Monte Carlo integration methods. We introduce an extension of DMC that incorporates an acceptance-rejection sampling step within DMC. This Acceptance-Rejection within Direct Monte Carlo (ARDMC) method has the attractive property that the generated random drawings are independent, which greatly helps the fast convergence of simulation results, and which facilitates the evaluation of the numerical accuracy. The speed of ARDMC can be easily further improved by making use of parallelized computation using multiple core machines or computer clusters. We note that ARDMC is an analogue to the well-known "Metropolis-Hastings within Gibbs" sampling in the sense that one 'more difficult' step is used within an 'easier' simulation method. We compare the ARDMC approach with the Gibbs sampler using simulated data and two empirical data sets, involving the settler mortality instrument of Acemoglu et al. (2001) and father's education's instrument used by Hoogerheide et al. (2012a). Even without making use of parallelized computation, an efficiency gain is observed both under strong and weak instruments, where the gain can be enormous in the latter case

    Structure of the outer layers of cool standard stars

    Get PDF
    Context: Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims: Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. Methods: The observational spectral energy distributions are compared with the theoretical predictions of the MARCS atmosphere models for a sample of 9 K- and M-giants. The discrepancies found are explained using basic models for flux emission originating from a chromosphere or an ionized wind. Results: For 7 out of 9 sample stars, a clear flux excess is detected at (sub)millimeter and/or centimeter wavelengths. The precise start of the excess depends upon the star under consideration. The flux at wavelengths shorter than about 1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionized wind is the main flux contributor at longer wavelengths. Conclusions: Although the optical to mid-infrared spectrum of the studied K- and M-giants is well represented by a radiative equilibrium atmospheric model, the presence of a chromosphere and/or ionized stellar wind at higher altitudes dominates the spectrum in the (sub)millimeter and centimeter wavelength ranges. The presence of a flux excess also has implications on the role of these stars as fiducial spectrophotometric calibrators in the (sub)millimeter and centimeter wavelength range.Comment: 13 pages, 6 figures, 7 pages of online material, submitted to A&
    corecore