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� We discuss Bayesian inferential procedures within the family of instrumental variables
regression models and focus on two issues: existence conditions for posterior moments of the
parameters of interest under a flat prior and the potential of Direct Monte Carlo (DMC)
approaches for efficient evaluation of such possibly highly non-elliptical posteriors. We show that,
for the general case of m endogenous variables under a flat prior, posterior moments of order
r exist for the coefficients reflecting the endogenous regressors’ effect on the dependent variable,
if the number of instruments is greater than m + r, even though there is an issue of local
non-identification that causes non-elliptical shapes of the posterior. This stresses the need for
efficient Monte Carlo integration methods. We introduce an extension of DMC that incorporates
an acceptance-rejection sampling step within DMC. This Acceptance-Rejection within Direct
Monte Carlo (ARDMC) method has the attractive property that the generated random drawings
are independent, which greatly helps the fast convergence of simulation results, and which
facilitates the evaluation of the numerical accuracy. The speed of ARDMC can be easily further
improved by making use of parallelized computation using multiple core machines or computer
clusters. We note that ARDMC is an analogue to the well-known “Metropolis-Hastings within
Gibbs” sampling in the sense that one ‘more difficult’ step is used within an ‘easier’ simulation
method. We compare the ARDMC approach with the Gibbs sampler using simulated data and
two empirical data sets, involving the settler mortality instrument of Acemoglu et al. (2001)
and father’s education’s instrument used by Hoogerheide et al. (2012a). Even without making
use of parallelized computation, an efficiency gain is observed both under strong and weak
instruments, where the gain can be enormous in the latter case.

Keywords Acceptance-Rejection; Bayesian inference; Direct Monte Carlo; Instrumental
variables; Numerical standard errors.
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4 A. Zellner et al.

1. INTRODUCTION

In many areas of economics and other sciences, models are specified
that contain instantaneous feedback mechanisms between variables. An
important example is the market system where prices and quantities
are jointly determined. The Simultaneous Equations Model (SEM), that
incorporates this mechanism, was systematically analyzed in the nineteen
forties and early nineteen fifties and documented in the well-known
Cowles Commission Monographs (Koopmans, 1950; Hood and Koopmans,
1950) and has been widely employed to analyze the behavior of markets,
macroeconomic and other multivariate systems. Inference on a complete
system of the SEM is rather involved and very sensitive to the assumptions,
see e.g. Bauwens and Van Dijk (1990), Van Dijk (2003). Therefore,
Zellner et al. (1988) proceeded with a more tractable and robust analysis
of a single equation of the SEM. This model can be linked to the
so-called Instrumental Variable (IV) regression model, where the issue
of endogeneity, another expression for immediate feedback mechanisms,
is extensively investigated (see e.g., Angrist and Krueger, 1991). A third
basic econometric model is the Errors in Variables (EV) model where a
measurement error in all variables is explicitly specified. The interesting
feature of these three models, SEM, IV, and EV models, is their common
statistical structure, namely, a possible strong correlation between a right
hand side variable in an equation and the disturbance of that equation.
This creates, however, an important problem for Bayesian econometric
inference compared to such inference in the basic regression model. We
note that in case of the basic linear regression model using a flat prior,
the coefficients have a Student-t posterior distribution. In the IV models
that we investigate, the posterior densities of the parameters of interest
are a product of a Student-t density and a polynomial or rational function.
Then one faces two issues. First, do analytical properties of posterior
distributions exist? Second, how can one efficiently evaluate posterior
properties numerically by Monte Carlo methods, especially if the shape of
the posterior may be highly non-elliptical? We emphasize that some of our
results on these two issues carry over to the SEM and EV model but that
for space considerations we restrict ourselves to the IV model. For more
details on the similarity of the mathematical structure of the IV model, EV
model, and SEM we refer to Zellner et al. (2011).

The first issue on conditions for the existence of posterior moments
relates to the well-known condition of nonsingularity of the parameter
matrix that reflects the effect of the instrumental variables on the possibly
endogenous regressors, and to the number of instrumental variables
compared to the number of endogenous regressors. We present an
overview of the joint, conditional and marginal posterior distributions
(and posterior moments) in the IV model with m ≥ 1 possibly endogenous
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Bayesian Analysis of Instrumental Variable Models 5

regressors under a flat prior. We show that in the case of over-
identification, or more precisely in the presence of m + r + 1 instruments,
posterior moments of order r exist for the coefficients that reflect the
endogenous regressors’ effect on the dependent variable, even though a
parameter matrix may become singular. Further, for the coefficients that
indicate the instruments’ effect on the endogenous regressors the first
few moments exist for any case of over-identification; to the best of our
knowledge, an analysis of the posterior moments of these coefficients is
novel. This is contrary to earlier suggestions in the literature stating that
the posterior of an IV model with flat prior may be improper due to the
unboundedness of the marginal posterior; see for instance Hoogerheide
et al. (2007). In case of over-identification Gibbs sampling is feasible;
the region of locally non-identified parameter values is not an absorbing
state (if identified parameter values are used as initial values), contrary to
a claim by Kleibergen and Van Dijk (1998).

Although the posterior is proper in case of a sufficient number of
instruments, one faces in empirical econometrics many situations where
the data information is weak in the sense of weak identifiability or weak
instrumental variables, strong endogeneity and the lack of many available
instruments. In these situations, the posterior may often have substantial
mass near and/or at the boundary of the parameter region. Examples of
data sets yielding such posterior shapes are given in Section 4; see also
De Pooter et al. (2008). The empirical issue is the following: given that
much data information may exist at or near the boundary of singularity,
the researcher may not want to exclude this information by a strong
informative prior that focuses on the center of the parameter space
and seriously down-weights or truncates relevant information near the
boundary. This situation does not only occur in weak instrument models
but also in unit root and cointegration models where the issue of near-
market efficiency is related to the occurrence of time series with near unit
roots. One also faces this issue in factor models. In all these situations
one may encounter a most important problem for empirical research,
that is, the appearance of highly non-elliptical shapes of the posterior
distributions.

Monte Carlo methods have been successfully applied for the
computation of posterior and predictive results. Typically, one uses
an indirect Monte Carlo method where one makes use of a correction
mechanism like a rejection step, an importance weighting step or
Markov Chain steps. For details on these methods we refer to standard
textbooks like Geweke (2005). The obvious reason is that direct sampling—
simulating independent drawings without a rejection step, an importance
weighting step or Markov Chain steps—is typically not feasible. Very
attractive properties of direct simulation are that it is straightforward
to apply and that the generated random drawings are independent,
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6 A. Zellner et al.

which greatly helps the speed of convergence of simulation results, and
facilitates the computation of accurate numerical standard errors or
predictive likelihoods. Further, the computations can be easily performed
in a parallelized fashion, which may yield another huge reduction of
computing time on multiple core machines or computer clusters. In
earlier work Zellner and Ando labeled this approach Direct Monte Carlo
(DMC); see Zellner and Ando (2008), Zellner and Ando (2010a), Zellner
and Ando (2010b), and Ando and Zellner (2010).

The important issue in the present paper is to determine whether the
posterior distribution studied for IV models allows for DMC. Specifically,
we discuss the applicability of DMC approaches in IV models with several
possibly endogenous regressors, multiple instruments, and Gaussian errors
under a flat prior. We emphasize that for models with multiple endogenous
regressors complete direct sampling is not possible. We introduce an
acceptance-rejection sampling step within the DMC method to simulate
from a low-dimensional marginal posterior distribution of coefficients
of interest. In order to obtain a suitable candidate distribution we
use a novel adaptation of the Mixture of t by Importance Sampling
weighted Expectation Maximization (MitISEM) method of Hoogerheide
et al. (2012b). Until now the MitISEM procedure has only been used to
construct an importance or candidate density for Importance Sampling
or the independence chain Metropolis–Hastings (MH) algorithm. Our
novel adaptation aims at a high acceptance rate in the acceptance-rejection
method rather than a low variance of the Importance Sampling weights.
Due to the flexibility of the MitISEM approach and the low dimension of
the marginal posterior, we are able to achieve rather high acceptance rates,
i.e., higher than 45%. We label our method Acceptance-Rejection within
Direct Monte Carlo (ARDMC) and note that ARDMC is an analogue to
the well-known “MH within Gibbs” sampling method in the sense that one
“more difficult” step is used within an “easier” simulation method.

In order to evaluate the efficiency of ARDMC, we compare our
approach with the Gibbs sampler using simulated data and two empirical
data sets, involving the settler mortality instrument of Acemoglu et al.
(2001) and father’s education’s instrument used by Hoogerheide et al.
(2012a). Even without making use of parallelized computation, an
efficiency gain is observed both under strong and weak instruments, where
the gain can be enormous in the latter case. For illustrative purposes, we
also present the posterior shapes.

The remainder of this paper is organized as follows. Section 2 considers
the joint, conditional and marginal posterior distributions (and their
moments) in the IV model with m ≥ 1 possibly endogenous regressors.
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Bayesian Analysis of Instrumental Variable Models 7

Section 3 discusses DMC and our proposed ARDMC approach. Section 4
shows applications where the performance of ARDMC and Gibbs sampling
is investigated. Section 5 discusses further possibilities of ARDMC, stressing
the scope of the method. Section 6 concludes.

2. IV MODEL WITH m POSSIBLY ENDOGENOUS
REGRESSORS UNDER A FLAT PRIOR: EXISTENCE
OF PROPER CONDITIONAL AND MARGINAL
POSTERIOR DISTRIBUTIONS AND POSTERIOR MOMENTS

In this section, we present an analysis of the joint, conditional, and
marginal posterior distributions (and posterior moments) in the following
IV model with m ≥ 1 possibly endogenous regressors under a flat prior:

yt = xt� + ut , (1)

xt = zt� + vt , (2)

for t = 1, � � � ,T , where yt is the dependent variable, xt is the 1 × m vector
of (possibly) endogenous explanatory variables, zt is the 1 × k vector of
instruments; � (m × 1) and � (k × m) contain model parameters; ut (1 ×
1) and vt (1 × m) contain disturbances. Finally, (ut , v ′

t)
′ ∼ NID(0(m+1)×1,�)

with (m + 1) × (m + 1) positive-definite symmetric matrix � =
(

�11 �12
�′
12 �22

)
,

where �11, �12 and �22 are 1 × 1, 1 × m and m × m matrices, respectively.1

The matrix representation of the model in (1) and (2) is

y = X� + u, (3)

X = Z� + V , (4)

where y = (y1, � � � , yT )′, X = (x ′
1, � � � , x

′
T )

′, Z = (z ′
1, � � � , z

′
T )

′, u = (u1, � � � ,uT )
′,

V = (v ′
1, � � � , v

′
T )

′, and (u ′, vec(V )′)′ ∼ N (0(T×(m+1))×1,� ⊗ IT ). We assume
that the data matrix (y XZ ) has full column rank m + k + 1. The posterior
density under a flat prior p(�,�,�) ∝ ∣∣�∣∣−h/2

with h = m + 2 is

p(�,�,� | y,X ,Z ) ∝ ∣∣�∣∣−(T+m+2)/2
exp

{
−1
2
tr

(
(u V )′(u V )�−1

)}
, (5)

where u = y − X� and V = X − Z�. Highly non-elliptical posterior shapes
may result from the local non-identification of � if � does not have full

1The model (1)–(2) may include exogenous explanatory variables wt (1 × n) in both
equations. In that case, we assume a flat prior for the coefficients at wt , and these coefficients
are marginalized out of the posterior distribution using analytical integration. This amounts to
replacing yt , xt and zt by their residuals after regression on wt , and replacing T by T − n.
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8 A. Zellner et al.

column rank, which is easily seen from the restricted reduced form

y = Z�� + ũ, (6)

X = Z� + V , (7)

with ũ ≡ V � + u, where � drops out from (6)–(7) if � = 0.
We will consider the marginal and conditional posterior densities

under a flat prior and discuss existence conditions for these posteriors and
their first and higher order moments. A summary of results is presented in
Fig. 1. For a description of the matrix normal and matrix t distributions we

FIGURE 1 Posterior distributions in the IV model with m possibly endogenous regressors, k
instruments, and Gaussian errors, under a flat prior.
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Bayesian Analysis of Instrumental Variable Models 9

refer to Zellner (1971). The marginal posterior distributions of � and �
were derived by Drèze (1976, 1977) and Kleibergen and Van Dijk (1998),
respectively. The contribution of this section is that it provides an overview
of all the marginal and conditional posteriors, where it is discussed
whether these are proper and whether these have finite moments. To
the best of our knowledge, an analysis of the posterior moments of � is
novel. A warning is included that an unknowing user may use the Gibbs
sampler in case of an improper posterior, while this would obviously not
make sense. Further, for a concise derivation of these posteriors and their
properties we refer to Appendix A.

The full conditional posterior distributions of �, �, and � are as
follows:

1) The conditional posterior of � given � and � is easily seen from (5) as
a kernel of the Inverse-Wishart density with T degrees of freedom and
scale matrix (u V )′(u V ) with u = y − X�, V = X − Z�.

2) The conditional posterior of � given � and � is the multivariate normal
distribution N (��|�,�,��|�,�), where ��|�,� ≡ (X ′X )−1X ′(y − �u|V ,�) and
��|�,� ≡ �u|V ,�(X ′X )−1; here we have �u|V ,� ≡ V �−1

22 �
′
12 and �u|V ,� ≡

�11 − �12�
−1
22 �

′
12.

3) The conditional posterior of � given � and � is the matrix normal
distribution Nmatrix(��|�,�,�V |u,�, (Z ′Z )−1) with ��|�,� ≡ (Z ′Z )−1Z ′(X −
�V |u,�); here we have �V |u,� ≡ u�−1

11 �12 and �V |u,� ≡ �22 − �′
12�

−1
11 �12.

That is, vec(�)|�,�, y,X ,Z ∼ N (vec(��|�,�),�V |u,� ⊗ (Z ′Z )−1).

The conditional distributions of � and � (after integrating out �) are
as follows:

4) The conditional posterior of � given � is the multivariate t density with
location vector �̂ and scale matrix s2

�̂
(X ′MVX )−1 and T − m degrees

of freedom—where M	 ≡ I − 	 (	′	)−1 	′, �̂ ≡ (X ′MVX )−1 X ′MV y, and
s2
�̂

≡ (y − X �̂)′Mv(y − X �̂)/(T − m)—given that (X ′MVX ) has full rank
m. The latter holds if and only if � has full rank m. If rank(�) < m, for
example if k < m (under-identification), then the conditional posterior
of � given � is improper.

5) The conditional posterior of � given � is a matrix t density with
location matrix �̂, scale matrices (Z ′MuZ )−1 and S�̂, and T − k −
m + 1 degrees of freedom—with �̂ ≡ (Z ′MuZ )

−1 Z ′MuX and S�̂ = (X −
Z �̂)′Mu(X − Z �̂))—for any number of endogenous variables m, any
number of instruments k and for every value of �.

The full conditional posteriors of �, �, and � are proper distributions
for all values of �, �, and � in their domain, for any number of
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10 A. Zellner et al.

instruments k ≥ 1 and for any number of possibly endogenous regressors
m ≥ 1. This implies that an unknowing user may erroneously apply the Gibbs
sampler in case of exact identification (or even under-identification),
even though the (joint) posterior distribution is improper, which will
be discussed below. A Gibbs sampler that simulates only � and � (after
integrating out �) may also be erroneously applied in case of exact
identification.

The marginal posterior distributions of � and � are as follows:

1) The marginal posterior of � is

p(� | y,X ,Z ) ∝ (u ′u)− T−m
2

(
u ′MZu

) T−k−m
2 , (8)

which is a t -density multiplied by a polynomial, or

p(� | y,X ,Z ) ∝
(
u ′MZu
u ′u

) T−k−m
2

(u ′u)− k
2 , (9)

which is an improper density for k ≤ m (exact or under-identification),
and a proper density for k > m (over-identification). In the latter case,
moments exist for (integer) order r = 0, 1, 2, � � � k − m − 1. From the
marginal posterior of �, the conditional posterior of � given � (which
is proper for any �), and the conditional posterior of � given � and
� (which is proper for any � and �) it is immediately clear that the
joint posterior of �, �, and � is proper if and only if k > m (over-
identification).

2) The marginal posterior of � is

p
(
� | y,X ,Z

) ∝ |V ′V |− T−1
2

∣∣�′Z ′MXZ�
∣∣ T−m−1

2
∣∣�′Z ′M(y X )Z�

∣∣− T−m
2 ,
(10)

a matrix t -density multiplied by a rational function, or

p
(
� | y,X ,Z

) ∝ |V ′V |− T−1
2

( ∣∣�′Z ′MXZ�
∣∣∣∣�′Z ′M(y X )Z�
∣∣
) T−m

2 ∣∣�′Z ′MXZ�
∣∣− 1

2 ,

(11)

which is integrable only for k > m (over-identification). In this case, the
first few moments–i.e., at least up to the fourth moment–exist (given
that T is not very small). For example, consider the case of m = 1.

For k = 1 the factor
∣∣�′Z ′MXZ�

∣∣− 1
2 is not integrable around � = 0,

since
∫ 1

−1
1

|�|d� = ∞. For k = 2
∣∣�′Z ′MXZ�

∣∣− 1
2 is integrable around
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Bayesian Analysis of Instrumental Variable Models 11

� = 0, since
∫

�|�2

1+�2
2≤1�

1
(�2

1+�2
2)

1/2 d� = 2�. Intuitively speaking, given
that the posterior of � is proper, higher order moments are finite,
since problems regarding integrability only occur due to the ‘vertical
asymptote’ for � tending to values with rank(�) < m, not due to fat
tails (as for the posterior of �). Multiplying (11) by �d

ij (i = 1, � � � , k;
j = 1, � � � ,m; d = 1, 2, � � � ) makes the function only ‘easier’ to integrate.

2.1. IV Model with m Possibly Endogenous Regressors
under Informative Prior on �

If one specifies a proper prior p(�) for �, e.g., a normal prior, so that

p(�,�,�) ∝ p(�) × |�|−m+1
2 , (12)

then the marginal, conditional, and joint posteriors in the IV model are
always proper, irrespective of the dimensions k and m. The marginal
posterior of � is then obviously obtained by multiplying (9) by p(�):

p(� | y,X ,Z ) ∝ p(�)
(
u ′MZu
u ′u

) T−k−m
2

(u ′u)− k
2 , (13)

whereas the conditional posteriors of � given �, and of � given � and �

remain the same matrix t and Inverse-Wishart distributions. Finite prior
moments of � then imply finite posterior moments of � (where the order
of finite posterior moments may be k − m + 1 larger than the order of
finite prior moments).

3. THE POTENTIAL OF DIRECT MONTE CARLO IN IV MODELS

Naturally, we should consider cases in which the posterior distribution
is proper: therefore we consider the IV model (1)–(2) with k ≥ m + 1
instruments (over-identification) under a flat prior, and also address the
IV model with k ≥ m instruments (exact or over-identification) under a
proper prior p(�). For m = 1 or m = 2 the posterior moments of � can
be computed accurately using quadrature. However, to analyze whether
the instruments have explanatory power for the regressors or whether the
regressors are endogenous in the first place, one is often also interested in
the posteriors of � and �, respectively.

We propose the following ARDMC method, a simulation-consistent
method for posterior simulation from the IV model with m ≥ 1 possibly
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12 A. Zellner et al.

endogenous regressors:

Step 1: Draw � from its marginal posterior in (9) (or (13) under a
proper prior on �), using the acceptance-rejection method (i.e., rejection
sampling).

Step 2: Draw � conditionally on � from its conditional matrix t
posterior.

Step 3: Draw � conditionally on (�,�) from its conditional Inverse-
Wishart distribution.

The acceptance-rejection method in step 1 produces a set of
independent drawings from the marginal posterior of �, which implies that
we obtain a set of independent drawings of (�,�,�). Obviously, we only
simulate � and � for accepted drawings of � from step 1, so that steps 2
and 3 are exactly those of a DMC method, directly simulating independent
drawings from the conditional distributions without a rejection step, an
importance weighting step or Markov Chain steps. The independence of
the drawings generated by ARDMC greatly helps the speed of convergence
of simulation results, and facilitates the computation of accurate numerical
standard errors or predictive likelihoods. Further, the computations can be
easily performed in a parallelized fashion, which may yield another huge
reduction of computing time on multiple core machines or computer
clusters. We note that ARDMC is an analogue to the well-known “MH
within Gibbs” sampling in the sense that one “more difficult” step is used
within an “easier” simulation method.

Generally, the acceptance-rejection method has one major drawback:
it requires a candidate density that provides a reasonably accurate
approximation of the target (posterior) density and that dominates the
target density (in the sense that the ratio of candidate over target has
a finite maximum, that should be as small as possible). In this situation
we are able to obtain such an accurate approximation for two reasons.
First, the dimension m of � is typically low; e.g. m = 1 or m = 2 (although
our ARDMC also appeared to work well in cases of m = 4). The lower
dimension of � is also the reason why we approximate the marginal
posterior of � rather than � in step 1. Second, we use a novel adaptation
of the MitISEM method of Hoogerheide et al. (2012b). Until now the
MitISEM procedure has only been used to construct an importance or
candidate density for Importance Sampling or the independence chain
MH algorithm.2 Our novel adaptation aims at a high acceptance rate in the
acceptance-rejection method rather than a low variance of the Importance
Sampling weights. We use a mixture of Student-t densities as the candidate,

2The intimate link between Importance Sampling and the independence chain MH algorithm
is pointed out by Liu (1996).
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Bayesian Analysis of Instrumental Variable Models 13

because it is easily evaluated, easily simulated from, and very flexible
in the sense that it can approximate a wide variety of posterior shapes
(e.g. multimodality or other types of non-elliptically curved shapes). Given
a proper posterior kernel, the adapted MitISEM algorithm automatically
finds an approximation of the posterior distribution: it starts with a
Student-t distribution around the posterior mode and adds Student-t
distributions as long as adding more Student-t components substantially
increases the acceptance rate of the acceptance-rejection method. An
IS weighted EM algorithm is used to optimize the locations, scales and
degrees of freedom of all Student-t distributions, minimizing the Kullback–
Leibler divergence between candidate and posterior. The allowed range
of the degrees of freedom parameters of the Student-t distributions
is restricted (from above) to ensure that the tails of the candidate
distribution are fatter than those of the posterior, so that the candidate
surely dominates the posterior.

In order to find the maximum of the ratio of the target density kernel
to the candidate density, required for the acceptance-rejection sampling
method, we proceed as follows. First, we compute this ratio for each
of a large set of candidate draws for � (e.g., 100,000 candidate draws)
that we will use in the acceptance-rejection sampling method, and find
the value �arg max in sample that corresponds to the highest ratio. Second,
we apply the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with
initial value �arg max in sample to find �arg max BFGS where the ratio takes
a (local) maximum. In our examples below, � is 1-dimensional or 2-
dimensional, so that it is relatively easy to check, using a graphical analysis
and the evaluation of the ratio on a very fine grid of values for �, that the
found �arg max BFGS is indeed the value �arg max global where the ratio takes its
global maximum.

For higher dimensional � such a check would be more difficult.
However, the abovementioned two-step procedure followed by the
application of the acceptance-rejection procedure is simulation-consistent,
because the probability that the ratio takes its global maximum at the
found value �arg max BFGS tends to 1 as the number of candidate draws tends
to infinity. In other words, the procedure is the (simulation-consistent)
regular acceptance-rejection method (with probability one) if the number
of candidate draws tends to infinity. The reason for this is that the ratio
is a smooth function of �, for which there exists a convex set B of values
of � around �arg max global for which (i) the ratio is larger than in any point
� outside B, (ii) the ratio is a concave function on B, (iii) the posterior
probability P�∈B that � lies in B is positive, so that also the probability P̃�∈B
that a candidate draw for � lies in B is positive. The latter implication holds
true, since we know that the ratio has a finite global maximum ratiomax
(so that P̃�∈B ≥ P�∈B/ratiomax > 0), which is ensured by the property that the
candidate density has fatter tails than the posterior density.
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14 A. Zellner et al.

That is, for large enough number of candidate draws �arg max in sample

lies in B after which the BFGS method will yield �arg max BFGS = �arg max global.
Note that if the ratio would have multiple global maxima, then the
procedure will find one of these global maxima, which is sufficient for the
acceptance-rejection method to work appropriately.

Summarizing, the proposed ARDMC method has the major advantages
of DMC: it is fast and generates a set of independent drawings from the
posterior. We will illustrate the quality of ARDMC for both simulated and
empirical data sets, comparing its performance with the Gibbs sampler.

4. APPLICATIONS OF ACCEPTANCE-REJECTION WITHIN DMC
(ARDMC)

4.1. ARDMC Simulation from Posteriors for Simulated Data Sets

We consider the posterior distribution in the IV model (1)–(2) under
the flat prior for four simulated data sets. We consider the following
cases of weak or strong instruments for either m = 1 or m = 2 possibly
endogenous regressors:

Case 1: k = 4 weak instruments for m = 1 strongly endogenous
regressor: � = 0�054×1, � = (

1 0�99
0�99 1

)
, T = 50, where  denotes a vector or

matrix of ones.

Case 2: k = 6 weak instruments for m = 2 strongly endogenous
regressors: � = 0�1

(
3×1 03×1
03×1 3×1

)
, � =

(
1 0�99 0�99

0�99 1 0�99
0�99 0�99 1

)
, T = 50.

Case 3: k = 4 very strong instruments for m = 1 moderately
endogenous regressor: � = 4×1, � = (

1 0�5
0�5 1

)
, T = 100.

Case 4: k = 6 very strong instruments for m = 2 moderately
endogenous regressors: � =

(
3×1 03×1
03×1 3×1

)
, � =

(
1 0�5 0�5
0�5 1 0�5
0�5 0�5 1

)
, T = 100.

For each case we take the instruments zt ∼ N (0, Ik) independent and
identically distributed (i.i.d.), and � = 0m×1; the true value of � = 0 does
not affect the shape of its posterior, only its location. Hoogerheide et al.
(2007) considered posteriors (for cases of m = 1 endogenous regressor)
on bounded regions: cases 1 and 3 are similar to the most extreme cases
of Hoogerheide et al. (2007) where � has a highly non-elliptical (bimodal)
posterior and an almost elliptical posterior, respectively.

Simulation results (without making use of parallelized computation
or Rao-Blackwellization) for ARDMC and Gibbs sampling are reported
in Table 1, where, to save space, for cases 2 and 4 (with m = 2) only
simulation results are shown for �. In all cases ARDMC performs better
than the Gibbs sampler: ARDMC requires substantially less computing time
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Bayesian Analysis of Instrumental Variable Models 15

TABLE 1 Simulation results for posterior distributions in IV model for four simulated data sets
(without making use of Rao-Blackwellization)

ARDMC Gibbs sampling

Posterior Posterior

Mean st.dev. NSE Mean st.dev. NSE s.c. ESS

Case 1 (k = 4 weak instruments for m = 1 strongly endogenous regressor)

� 1.2984 0.6318 0.0025 1.4661 0.2265 0.0189 0.995 143
�1 −0.0493 0.0733 0.0003 −0.0753 0.0476 0.0016 0.245 908
�2 −0.1049 0.1111 0.0004 −0.1461 0.0677 0.0038 0.667 317
�3 −0.0886 0.1075 0.0004 −0.1303 0.0566 0.0030 0.573 368
�4 −0.1167 0.1218 0.0005 −0.1615 0.0749 0.0042 0.684 317
� ≡ �12/

√
�11�22 −0.6482 0.7201 0.0028 −0.9659 0.0273 0.0015 0.815 354

Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)

64,133 accepted draws
Computing time: ∗ total 44 s 61 s

∗ candidate 24 s
∗ sampling 20 s

Case 2 (k = 6 weak instruments for m = 2 strongly endogenous regressors)

�1 0.5814 0.3666 0.0017 0.1634 0.3285 0.0114 0.970 832
�2 0.7077 0.3432 0.0016 0.3340 0.3384 0.0138 0.973 595

Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)
47,153 accepted draws

Computing time: ∗ total 47 s 82 s
∗ candidate 11 s
∗ sampling 36 s

Case 3 (k = 4 very strong instruments for m = 1 moderately endogenous regressor)

� −0.0174 0.0514 0.1886 ·10−3 −0.0177 0.0512 0.1985 ·10−3 0.358 66580
�1 0.9893 0.0888 0.3258 ·10−3 0.9888 0.0888 0.2901 ·10−3 0.059 93807
�2 1.0412 0.0845 0.3101 ·10−3 1.0410 0.0843 0.2849 ·10−3 0.103 87654
�3 0.9921 0.0864 0.3170 ·10−3 0.9918 0.0863 0.2798 ·10−3 0.061 95172
�4 1.0057 0.0868 0.3185 ·10−3 1.0063 0.0864 0.2885 ·10−3 0.068 89414
� ≡ �12/

√
�11�22 0.4498 0.0898 0.3298 ·10−3 0.4502 0.0897 0.3193 ·10−3 0.206 78861

Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)
74,224 accepted draws

Computing time: ∗ total 32 s 64 s
∗ candidate 7 s
∗ sampling 25 s

Case 4 (k = 6 very strong instruments for m = 2 moderately endogenous regressors)

�1 −0.0305 0.0532 0.2170 ·10−3 −0.0303 0.0533 0.2303 ·10−3 0.424 53473
�2 0.1290 0.0480 0.1956 ·10−3 0.1296 0.0479 0.1966 ·10−3 0.383 59241

Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)
60,105 accepted draws

Computing time: ∗ total 41 s 85 s
∗ candidate 7 s
∗ sampling 34 s

NSE = Numerical Standard Error of estimated posterior mean
s.c. = first order serial correlation in Gibbs sequence
ESS = Effective Sample Size (for estimating the posterior mean)
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16 A. Zellner et al.

than Gibbs sampling (on an Intel Centrinotm processor) to yield similar
precision (for very strong instruments) or much higher precision (for weak
instruments). For ARDMC the Numerical Standard Error (NSE) of the
estimated posterior mean is easily computed as the estimated posterior
standard deviation divided by the square root of the number of accepted
draws, whereas for the Gibbs sampler we make use of the Initial Positive
Sequence Estimator of Geyer (1992). The Effective Sample Size is the
equivalent number of independent draws from the posterior that would
lead to the same NSE; see Liu (2001).

For cases 1 and 2, the Gibbs sampler’s ESS values are very low, less than
1000 for a set of 100000 draws. The slow movement of the Gibbs sequence
through the parameter space is reflected by the high serial correlation
for � and � ≡ �12/

√
�11�22. Moreover, the difference in quality between

ARDMC and Gibbs sampling is even larger than suggested by the NSE and
Effective Sample Size (ESS). The Gibbs sampler misses relevant parts of
the parameter space. For case 1 (2), Fig. 2 (4) shows that the posterior
of � is bimodal; that the adapted MitISEM method generates (in merely
24 (11) seconds) a mixture of 7 (3) Student-t distributions that provide a

FIGURE 2 Marginal posterior of � in case 1 (k = 4 weak instruments for m = 1 strongly
endogenous regressor): posterior density kernel (top left); candidate density (mixture of 7 Student-t
densities) (top right); histogram of ARDMC draws (bottom left); histogram of Gibbs draws (bottom
right). (Figure available in color online.)
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Bayesian Analysis of Instrumental Variable Models 17

reasonably accurate approximation of the posterior, which yields a set of
100,000 candidate draws of which 64133 (47157) independent posterior
draws are accepted; and that the Gibbs sequence is stuck in a region of
parameter values around one of the two modes. Even if we generate ten
million draws, the Gibbs sequence is still stuck in the region around one
of the two modes. For case 1, the histogram of each 100th Gibbs draw
in Fig. 3 shows that one of the two modes is now completely “covered”,
but that the other mode is still “missed” by ten million consecutive Gibbs
draws. So, reliable Gibbs sampling requires a chain that is impracticably
long in this example, because the Gibbs sampler is very poorly mixing.
Note that we do not claim that the Gibbs sampler is (theoretically)
nonergodic; for an infinite number of draws, the Gibbs sampler will move
between the modes. For case 2, the bottom-right panel of Fig. 4 shows that
all Gibbs draws are from the bottom-left “mountain” around the origin,
which is much smaller than the top-right “mountain” around (�1, �2) =
(1, 1) (in the sense that the first contains much less posterior probability
mass). Therefore, this bottom-left “mountain” may look a bit “wider” for
the Gibbs sampler than for ARDMC in the scatter plots of Fig. 4, since only
a small fraction of the ARDMC draws is located in this area.

To explain the posterior shapes for case 2, we rewrite the marginal
posterior of � as

p(� | y,X ,Z ) ∝
(
(y − X�)′MZ (y − X�)

(y − X�)′(y − X�)

) T−k−m
2

((y − X�)′(y − X�))− k
2

FIGURE 3 Marginal posterior of � in case 1 (k = 4 weak instruments for m = 1 strongly
endogenous regressor): histogram of each 100th draw in a Gibbs sequence of ten million draws.
(Figure available in color online.)
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18 A. Zellner et al.

FIGURE 4 Marginal posterior of � in case 2 (k = 6 weak instruments for m = 2 strongly
endogenous regressors): contour plot of posterior density kernel (top left); contour plot of
candidate density (mixture of 3 Student-t densities) (top right); scatter plot of posterior draws
generated by ARDMC (bottom left); scatter plot of posterior draws generated by the Gibbs sampler
(bottom right). (Figure available in color online.)

=
(
1 − (PZ y)′MPZX (PZ y) + (� − �̂2SLS)

′X ′PZX (� − �̂2SLS)

y′MXy + (� − �̂OLS)′X ′X (� − �̂OLS)

) T−k−m
2

× (y′MXy + (� − �̂OLS)
′X ′X (� − �̂OLS))

− k
2 (14)

with PZ = Z (Z ′Z )−1Z ′, �̂2SLS = (X ′PZX )−1X ′PZ y, �̂OLS = (X ′X )−1X ′y.
In case of weak instruments �̂OLS and �̂2SLS may be relatively far

apart. Indeed for our case 2 the difference between �̂OLS = (0�44, 0�58)′

and �̂2SLS = (0�70, 0�80)′ is relatively large, and (PZ y)′MPZX (PZ y) and y′MXy
are both small, due to the weakness of the instruments and the strong
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Bayesian Analysis of Instrumental Variable Models 19

endogeneity, respectively. This implies that (14) is very low for � ≈
�̂OLS , whereas on both sides of �OLS there are regions where (14) is
not negligible. X ′X has eigenvectors (−0�72, 0�70) and (0�70, 0�72) with
eigenvalues 2.57 and 91.58, respectively, which explains the ‘ravine’ of
low posterior density values around the line 
� = �̂OLS + �(−0�72, 0�70)′|� ∈
��. The top row of Fig. 5 shows contour plots of the logarithm of the
posterior, the numerator (PZ y)′MPZX (PZ y) + (� − �̂2SLS)

′X ′PZX (� − �̂2SLS),
and the denominator y′MXy + (� − �̂OLS)

′X ′X (� − �̂OLS) of the ratio in
(14). For case 1 the (bimodal) posterior shapes are explained in an
analogous fashion.

For cases 3 and 4, the Gibbs sampler performs reasonably well,
although it requires more computing time than ARDMC. It should be
noted that the simulated instruments are very strong; in many empirical
applications—of which one will be considered below—the elements of �
are less significant and more similar among columns, or the instruments
are correlated. In cases 3 and 4, the posterior is closer to an elliptical
distribution, see Fig. 6. Therefore it takes the adapted MitISEM method
even less time to construct an approximation of the posterior, since
mixtures of only two Student-t distributions are used. Figure 6 shows that,

FIGURE 5 Contour plots: logarithm of posterior density kernel (left); numerator
(PZ y)′MPZ X (PZ y) + (� − �̂2SLS )

′X ′PZX (� − �̂2SLS ) of ratio in (14) (middle); denominator y′MX y +
(� − �̂OLS )

′X ′X (� − �̂OLS ) of ratio in (14) (right). Top row: case 2 (k = 6 weak instruments for
m = 2 strongly endogenous regressors). Bottom row: case 4 (k = 6 very strong instruments for
m = 2 moderately endogenous regressors). (Figure available in color online.)

D
ow

nl
oa

de
d 

by
 [

E
ra

sm
us

 U
ni

ve
rs

ity
] 

at
 0

7:
02

 1
1 

A
ug

us
t 2

01
5 



20 A. Zellner et al.

FIGURE 6 Marginal posterior of � in case 3 (k = 4 strong instruments for m = 1 moderately
endogenous regressor): posterior density kernel (left); candidate density (mixture of 2 Student-
t densities) (middle). Marginal posterior of � in case 4 (k = 6 strong instruments for m =
2 moderately endogenous regressors): contour plot of posterior density kernel (right). (Figure
available in color online.)

although its (far) tails are Student-t type, the ‘middle part’ of the posterior
of � in case 3 is more like a Gaussian distribution. The bottom row of Fig. 5
shows the logarithm of the posterior of � for case 4. Here the difference
between �̂OLS = (0�04, 0�19)′ and �̂2SLS = (−0�02, 0�14)′ is smaller than for
case 2. Moreover, the strong instruments and moderate endogeneity imply
that (PZ y)′MPZX (PZ y) and y′MXy are much larger than in case 2, so that
there is no ‘ravine’ through �̂OLS . Far away from the posterior mode, the
shapes (driven by the eigenvectors and eigenvalues of X ′PZX and X ′X )
become somewhat similar to case 4, but this occurs only for very low levels
of the posterior density. For case 3, the posterior shapes are explained in
an analogous fashion.

Table 2 shows simulation results for case 1 and 3 where we make
use of Rao-Blackwellization in order to estimate the posterior means (and
standard deviations) of � and �. The benefits of Rao-Blackwellization
depend crucially on three factors: (i) the simulation method, (ii) the
strength of the instruments, and (iii) the parameter that is considered.
For ARDMC the benefits are substantial unless one considers the posterior
mean of � in case 1 of weak instruments. For the Gibbs sampler the
benefits are substantial unless one considers the posterior mean of either �
or � in case 1 of weak instruments. In the latter case, one faces negligible
gains.

If we estimate the posterior mean of �, then the benefits of Rao-
Blackwellization stem from the fact that the standard deviation of
E [�|�,�, data] (where a posterior draw is used for (�,�)), reported in the
last column of Table 2, is smaller than the posterior standard deviation of �
itself, since Rao-Blackwellization means that we compute the average of the
first instead of the second. However, in our case 1 of weak instruments the
benefits are small, since the standard deviation of E [�|�,�, data] almost
equals the posterior standard deviation of � due to the strong posterior
dependence between �, �, and �. For Rao-Blackwellization of the Gibbs
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22 A. Zellner et al.

sampler, a disadvantage is that the serial correlation in the Gibbs sequence
may be much larger for E [�|�,�, data] than for � itself, so that the
benefits due to the smaller standard deviation are partly (or in certain
cases almost completely) lost. This phenomenon is observed for the
estimation of the posterior mean of � in case 1 of weak instruments. For
ARDMC this disadvantage is not present, since ARDMC generates a set of
independent draws. Therefore, the relative benefits of Rao-Blackwellization
are larger for ARDMC than for the Gibbs sampler. In fact, in our case
1 of weak instruments the difference in precision between ARDMC and
Gibbs is much larger than the benefits from Rao-Blackwellization in either
procedure.

For the Gibbs sampler in case 1 the reported ESS for �1 and �3 is
even slightly smaller for the case with Rao-Blackwellization than without
Rao-Blackwellization. This is merely caused by the fact that the used NSE
and posterior standard deviation are estimates.

We have also considered cases with m = 4, with weak or strong
instruments, similar to cases 2 and 4. Then we still observe a similar
“victory” of ARDMC (with acceptance rates of 38% and 52%) over the
Gibbs sampler in terms of numerical accuracy. This is no surprise, as
Hoogerheide et al. (2012b) show examples of posteriors with 17 and 36
parameters, where the MitISEM method provides importance densities
that are reasonably accurate approximations of the joint posterior.

4.2. ARDMC Simulation from Posteriors for Empirical Data Sets

Our first empirical example is due to Acemoglu et al. (2001), see also
Conley et al. (2008). Acemoglu et al. (2001) consider the effect of the
risk of expropriation on the GDP per capita. To solve the endogeneity
problem, European settler mortality is used as an instrument for the risk of
expropriation. The idea behind this instrument is that in former colonies
with high settler mortality Europeans could not settle and, therefore, set
up more extractive institutions. The sample consists of T = 64 ex-colony
countries. The model is given by

logGDPt = APERt� + wt�1 + ut , (15)

APERt = logmortalityt� + wt�2 + vt , (16)

where the dependent variable logGDPt is the logarithm of GDP per capita
in 1995, the m = 1 possibly endogenous regressor APERt is the ‘Average
protection against expropriation risk’ for the period 1985–1995, the k = 1
instrument logmortalityt is the logarithm of European settler mortality.
The exogenous regressors wt are the conditioning variables including a
constant, latitude and dummies for African and Asian countries. The data
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Bayesian Analysis of Instrumental Variable Models 23

FIGURE 7 Empirical data set of Acemoglu et al. (2001) that is used in the first empirical example.
(Figure available in color online.)

yt , xt and zt in (1)–(2), obtained as the residuals of logGDPt , APERt and
logmortalityt after regression on the control variables wt , are shown in
Fig. 7. The left panel illustrates the weakness of the instrument.

In this case of exact identification (k = m = 1) we use a proper, non-
informative prior for �, a normal distribution with mean 0, and standard
deviation 100. Under the flat prior, the posterior would be improper.

Simulation results are reported in Table 3. The posterior mean and
standard deviation of � show that this concerns a case of weak instruments,
similar to case 1 of the simulated data sets. Figure 8 shows that the Gibbs
sampler, which suffers from a huge serial correlation in the Gibbs sequence
of drawings, misses a relevant part (consisting of negative values of �) of
the bimodal posterior. On the other hand, ARDMC yields (with a high
acceptance rate) a set of posterior drawings in a quick and reliable fashion.

Our second empirical example uses a data set that is made available by
the German Socio-Economic Panel Study (SOEP) at the German Institute
for Economic Research (DIW), Berlin. For more information about the
SOEP, we refer to Wagner et al. (1993, 2007). The data set has been used
by Hoogerheide et al. (2012a). The sample consists of a cross-section of
T = 8244 individuals (without missing values) in the year 2004. The model
is given by

logwaget = educationt � + wt�1 + ut , (17)

educationt = father’s educationt � + wt�2 + vt , (18)

where the dependent variable logwaget is the logarithm of hourly wage in
2004, the m = 1 possibly endogenous regressor educationt is the number
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24 A. Zellner et al.

TABLE 3 Posterior simulation results for empirical examples (without making use of
Rao-Blackwellization)

ARDMC Gibbs sampling

Posterior Posterior

Mean st.dev. NSE Mean st.dev. NSE s.c. ESS

Example (m = 1, k = 1, T = 64 countries) due to Acemoglu et al. (2001) under proper, noninformative
N(0,100) prior on �:
yt = log GDP per capita; xt =Average Protection against Expropriation Risk; zt = log European settler mortality.

� 1.7936 26.6797 0.0991 2.2131 2.1621 0.5358 0.999 16
�1 −0.2564 0.2066 0.0008 −0.2899 0.1898 0.0302 0.804 39
� ≡ �12/

√
�11�22 −0.6613 0.5868 0.0022 −0.8562 0.1593 0.0178 0.932 81

Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)
72,472 accepted draws

Computing time: ∗ total 48 s 59 s
∗ candidate 27 s
∗ sampling 21 s

Example (m = 1, k = 3, T = 8, 244 individuals) of German SOEP data under proper, noninformative N (0, 1)
prior on �:
yt = log hourly wage; xt = years of education; zt =dummy variables indicating father’s education.

� 0.0812 0.0064 0.2196 ·10−4 0.0813 0.0063 0.7903 ·10−4 0.892 6435
�1 1.1525 0.0738 2.5447 ·10−4 1.1524 0.0734 2.3373 ·10−4 0.001 98490
�2 1.4388 0.3095 10.6693 ·10−4 1.4387 0.3112 10.1407 ·10−4 0.002 94169
�3 2.4151 0.0801 2.7604 ·10−4 2.4156 0.0800 2.7242 ·10−4 0.013 86191
� ≡ �12/

√
�11�22 −0.0858 0.0331 1.1421 ·10−4 −0.0859 0.0331 4.1193 ·10−4 0.891 6458

Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)
84,156 accepted draws

Computing time: ∗ total 38 s 68 s
∗ candidate 10 s
∗ sampling 28 s

Example (m = 2, k = 3, T = 8, 244 individuals) of German SOEP data under proper, noninformative N (0, I2)
prior on �:
yt = log hourly wage; xt = years of education, unemployment duration; zt =dummy variables indicating father’s
education.
�1 0.0653 0.0196 0.0798 ·10−3 0.0623 0.0188 4.3665 ·10−3 0.988 19
�2 −0.2595 0.2380 0.9692 ·10−3 −0.3030 0.2298 57.8415 ·10−3 0.999 16
Number of draws 100,000 candidate draws 100,000 (+1,000 burnin)

60,312 accepted draws
Computing time: ∗ total 56 s 91 s

∗ candidate 8 s
∗ sampling 48 s

NSE, s.c., ESS: see Table 1.

of years of education, the k = 3 instruments (father’s educationt) are
dummy variables reflecting father’s secondary education: “Hauptschule”
(9 years), “Realschule” (10 years), “Fachhochschulreife” (12 years), or
“Abitur” (13 years). We take “Hauptschule” as the reference category.
The exogenous regressors wt are a constant, respondent’s labor market
experience (in its linear and squared terms), gender, wealth (as proxied by
the respondent’s income from assets), marriage status, nationality, whether
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Bayesian Analysis of Instrumental Variable Models 25

FIGURE 8 Marginal posterior of � for example due to Acemoglu et al. (2001): posterior density
kernel (top left); candidate density (mixture of 8 Student-t densities) (top right); histogram of
ARDMC draws (bottom left); histogram of Gibbs draws (bottom right). (Figure available in color
online.)

the respondent lives in the former West-Germany, whether the respondent
is self-employed, industry dummies, and the duration that an individual
has been unemployed in his or her entire working life. The data yt , xt
and zt in (1)–(2) are obtained as the residuals of logwaget , educationt ,
and father’s educationt after regression on the control variables wt . In this
case of over-identification (k = m + 2), a flat prior would imply a proper
posterior with a finite posterior mean of �. However, since we are also
interested in the posterior variance of �, and particularly since we desire
to compare (finite) NSE for the estimated posterior mean of �, we specify
a proper, non-informative prior for �, a standard normal distribution.

Simulation results are reported in Table 3. The posterior means and
standard deviations of the elements of � show that this concerns a case of
strong instruments, similar to case 3 of the simulated data sets. However,
although the estimated posterior moments are similar for Gibbs sampling
and ARDMC, the Gibbs sampler’s ESS for estimating the posterior mean of
� and � is merely around 6,500 (for 100,000 draws), due to the rather high
serial correlation in the Gibbs sequences of draws of � and �. Therefore,
ARDMC clearly provides a higher numerical accuracy than the Gibbs
sampler in this case of strong instruments.

We now estimate a model with m = 2 possibly endogenous regressors:

logwaget = educationt �1 + unemploymentt �2 + wt�1 + ut , (19)
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26 A. Zellner et al.

educationt = father’s educationt �1 + wt�21 + vt1, (20)

unemploymentt = father’s educationt �2 + wt�22 + vt2, (21)

where both years of education and the duration that an individual has
been unemployed (in his or her entire working life) are considered as
possibly endogenous regressors, where the latter is now also excluded from
wt . The idea behind this choice is that unemployment duration, just like
education, may be correlated with a latent ‘ability’ that affects the error
term ut in (19). We specify a proper, non-informative N (0, I2) prior for
�. Simulation results are reported in Table 3. Here the Gibbs sequence
of � has a huge serial correlation, illustrated by Fig. 9, which causes a
very low ESS. On the other hand, ARDMC still has a high acceptance
rate of approximately 60%. This model provides a nice example of a
marginal posterior of � that is rather close to an elliptical distribution,
where the Gibbs sampler would require many more drawings (and much
more computing time) than ARDMC to yield accurate estimates of the
posterior moments.

Table 4 shows simulation results for the first two empirical models
where we make use of Rao-Blackwellization in order to estimate the
posterior means (and standard deviations) of � and �. The findings are
similar to those for the simulated data sets. In the first case of one weak
instrument the difference in precision between ARDMC and Gibbs is much
larger than the benefits from Rao-Blackwellization in either procedure. In

FIGURE 9 IV model with m = 2 possibly endogenous regressors (education and unemployment
spell): scatter plot of every 100th draw in the Gibbs sequence. (Figure available in color online.)
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the second case of three strong instruments, the benefits from Rao-
Blackwellization are substantial, where the relative benefits are even larger
for ARDMC than for the Gibbs sampler.

5. FURTHER POSSIBILITIES OF ARDMC

Suppose that one is also interested in the effect of the included
exogenous variables wt (1 × n) in

yt = xt� + wt�1 + ut , (22)

xt = zt� + wt�2 + vt , (23)

where one specifies the prior p(�,�,�, �1, �2) ∝ p(�) |�|−m+2
2 . After

applying the ARDMC method to the posteriors where yt , xt , and zt are
replaced by their residuals after regression on wt (and where T is replaced
by T − n), the ARDMC procedure is easily extended by a fourth step where
(�1, vec(�2))′ is simulated from its conditional posterior (conditional upon
�,�, and �), N (vec[(W ′W )−1W ′(y − X�) (W ′W )−1W ′(X − Z�)],� ⊗
(W ′W )−1) with W = (w ′

1, � � � ,w
′
T )

′.
Further, the ARDMC procedure can be applied in a nonlinear IV

model

yt = f (xt , �) + ut , (24)

xt = zt� + vt , (25)

with (ut , v ′
t)

′ ∼ NID(0(m+1)×1,�) under the prior p(�,�,�) ∝ p(�) |�|−m+2
2 .

Then the adapted MitISEM method in step 1 will aim at the marginal
posterior of �

p(� | y,X ,Z ) ∝ p(�)

(
(y − f (X , �))′MZ (y − f (X , �))

) T−k−m
2

((y − f (X , �))′(y − f (X , �)))
T−m
2

, (26)

where f (X , �) ≡ (f (x1, �), � � � , f (xT , �))′. For example, a possibly nonlinear
effect of education on the logarithm of income could be investigated by
specifying f (xt , �) = �0 + �1x

�2
t . The conditional posteriors (of � given �,

and of � given � and �) in steps 2 and 3 simply remain the matrix t and
inverse-Wishart distributions (with u ≡ y − f (X , �)).

The ARDMC method can not be readily applied to the posterior under
Jeffreys’ prior. Although Jeffreys’ prior eliminates the vertical asymptote
of the marginal posterior of � around � = 0, the marginal posterior
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Bayesian Analysis of Instrumental Variable Models 29

of � (and the posterior of (�,�)) may still be highly non-elliptical; see
Subsection 4.2.2 of Hoogerheide (2006). Moreover, posterior moments of
� and � do not exist, since the posteriors of � and � under Jeffreys’ prior
have Cauchy-type tails, even in case of over-identification. Summarizing,
not all the issues due to local non-identification are solved by the use
of Jeffreys’ prior, and it leads to posterior properties that may be found
undesirable. For posterior simulation under Jeffreys’ prior we refer to the
methods developed by Kleibergen and Van Dijk (1998) and Kleibergen
and Paap (2002).

6. CONCLUSIONS AND FUTURE WORK

We discussed Bayesian inferential procedures within the instrumental
variables regression model and focused on two issues: existence conditions
for posterior moments under a flat prior and the potential of DMC
approaches for efficient evaluation of such possibly highly non-elliptical
posteriors. We discussed that, for the general case of m endogenous
variables, posterior moments of order r exist using a flat prior if the
number of instruments is greater than m + r . We discussed the potential
of DMC approaches for this case and introduced an extension of DMC
that incorporates an acceptance-rejection sampling step within DMC. This
Acceptance-Rejection within DMC (ARDMC) method has as attractive
property that the generated random drawings are independent, which
greatly helps the fast convergence of simulation results, and which
facilitates the evaluation of the numerical accuracy. For several cases of
simulated and empirical data sets ARDMC outperforms the Gibbs sampler
in terms of numerical accuracy.

We leave the following issues as topics for future research. First,
the speed of ARDMC can be easily further improved by making use
of parallelized computation using multiple core machines and computer
clusters, which is less straightforward for MCMC methods. This could
reduce the computing time by a substantial factor. Second, one may focus
on the EV model and the SEM. Third, as an alternative to a choice between
the linear model and IV model, one may use BMA of the posteriors in the
linear and IV model, based on either the marginal or predictive likelihoods
of the models, see Zellner et al. (2011). Fourth, the ARDMC procedure
may be used to simulate candidate draws for Importance Sampling or
the independence chain MH algorithm, in cases where one specifies an
informative prior for the parameters � or �.
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30 A. Zellner et al.

A. IV MODEL WITH m POSSIBLY ENDOGENOUS REGRESSORS
UNDER A FLAT PRIOR: DERIVATIONS OF CONDITIONAL AND
MARGINAL POSTERIOR DISTRIBUTIONS

This Appendix provides a concise derivation of the conditional and
marginal posterior distributions, and the results on properness and
posterior moments, that are considered in Section 2.

For the conditional posterior density of � given � and �, we use the
fact that only u is a function of parameter � in (5), and properties of
the multivariate normal distribution. We have u|V ,� ∼ N (�u|V ,�,�u|V ,� IT ).
Hence the conditional posterior of � given � and � is

p(� |�,�, y,X ,Z ) ∝ p(u|V ,�)

∝ exp
{
−1
2
tr

(
�−1

u|V ,�

(
y − �u|V ,� − X�

)′ (
y − �u|V ,� − X�

))}
� (A.1)

Completing the sum of squares in (A.1) shows that the conditional
posterior of � |�,� is the multivariate normal density N (��|�,�,��|�,�),
where ��|�,� ≡ (X ′X )−1X ′(y − �u|V ,�) and ��|�,� ≡ �u|V ,� (X ′X )−1.

For the conditional posterior density of � given � and �, we
use the fact that only V is a function of parameter � in (5), and
properties of multivariate normal distribution. We have vec(V )|u,� ∼
N (vec(�V |u,�),�V |u,� ⊗ IT ). Hence the conditional posterior of � is

p(� | �,�, y,X ,Z ) ∝ p(V |u,�)
∝ exp

{
−1
2
tr

(
�−1

V |u,�
(
X − �V |u,� − Z�

)′ (
X − �V |u,� − Z�

))}
� (A.2)

Completing the squares in (A.2) shows that the conditional posterior of
�|�,� is the matrix normal distribution Nmatrix(��|�,�,�V |u,�, (Z ′Z )−1) with
��|�,� ≡ (Z ′Z )−1Z ′(X − �V |u,�).

The marginal posterior of � and � is obtained by the Inverse-Wishart
step on �

p(�,� | y,X ,Z ) ∝
∫
�

∣∣�∣∣−(T+m+2)/2
exp

{
−1
2
tr

(
(u V )′(u V )�−1

)}
d�,

(A.3)

where the right hand side is the Inverse-Wishart density apart from an
integrating constant and the factor

∣∣(u V )′(u V )
∣∣T /2

, so

p(�,� | y,X ,Z ) ∝ ∣∣(u V )′ (u V )
∣∣−T /2

� (A.4)
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The conditional posterior of � given � is obtained by using the following
determinant decomposition:

p
(
�, � | y,X ,Z

) ∝ ∣∣(u V )′ (u V )
∣∣−T /2 = |V ′V |−T /2

(
u ′MV u

)−T /2
� (A.5)

Completing the squares on � yields

p
(
�,� | y,X ,Z

) ∝ |V ′V |− T
2

(
(T − m) s2

�̂

)− T
2

1 +
(
� − �̂

)′
(X ′MV X )

(
� − �̂

)
(T − m) s2

�̂


− T

2

,

(A.6)

so that p(� |�, y,X ,Z ) is a multivariate t density with location vector �̂
and scale matrix s2

�̂
(X ′MVX )−1 and T − m degrees of freedom, given that

(X ′MVX ) has full rank m. The latter holds if

|X ′MVX | = |V ′MXV | |X
′X |

|V ′V | > 0 ⇔ |�′Z ′MXZ�| |X
′X |

|V ′V | > 0, (A.7)

where we have used that MXV = MX (X − Z�) = −MXZ�. (A.7) holds if
�′Z ′MXZ� has full rank m, which is true if and only if � has full column
rank m.

In a similar fashion, we derive the conditional posterior of � given �

p
(
�,� | y,X ,Z

) ∝ (u ′u)−T /2
∣∣∣S�̂ (

Im + (S�̂)
−1 (

� − �̂
)′
Z ′MuZ

(
� − �̂

))∣∣∣−T /2
�

(A.8)

That is, p(� | �, y,X ,Z ) is a matrix t density with location matrix �̂, scale
matrices (Z ′MuZ )−1 and S�̂, and T − k − m + 1 degrees of freedom for any
number of endogenous variables m, any number of instruments k and for
every value of �.

The marginal posterior of � is derived by integrating (A.8)

p
(
� | y,X ,Z

)
∝ (u ′u)−T /2

∫
�

∣∣S�̂∣∣−T /2
∣∣∣(Im + (S�̂)

−1 (
� − �̂

)′
Z ′MuZ

(
� − �̂

))∣∣∣−T /2
d�,

(A.9)

= (u ′u)−T /2
∣∣S�̂∣∣−(T−k)/2 ∣∣Z ′MuZ

∣∣−m/2∫
�

∣∣Z ′MuZ
∣∣m/2 ∣∣S�̂∣∣−k/2

(
Im + (S�̂)

−1 (
� − �̂

)′
Z ′MuZ

(
� − �̂

))
d�,
(A.10)

∝ (u ′u)−T /2
∣∣S�̂∣∣−(T−k)/2 ∣∣Z ′MuZ

∣∣−m/2
, (A.11)
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where the integral in (A.10) is the matrix t density. The marginal posterior
of � in (A.11) is simplified as follows. The third factor (A.11) is

∣∣Z ′MuZ
∣∣ = (

u ′MZu
) ∣∣Z ′Z

∣∣
(u ′u)

∝ u ′MZu
u ′u

� (A.12)

The second factor in (A.11) is

∣∣S�̂∣∣ = ∣∣(MuX )′ MMuZ (MuX )
∣∣ = ∣∣(MuZ )′MMuXMuZ

∣∣ ∣∣X ′MuX
∣∣∣∣Z ′MuZ
∣∣ , (A.13)

where the first factor on the right-hand side of (A.13), the sample
covariance matrix (multiplied by T − m − 1) of the residuals in a
regression of Z on X and u, is equal to

(MuZ )′MMuXMuZ = (MXZ )′MMX uMXZ = (MXZ )′MMX yMXZ , (A.14)

which does not depend on �; in (A.14), we used MXu = MX (y − X�) =
MXy. Therefore,

∣∣��̂

∣∣ ∝
∣∣X ′MuX

∣∣∣∣Z ′MuZ
∣∣ ∝ u ′MXu

∣∣X ′X
∣∣

u ′u

(
u ′MZu

∣∣Z ′Z
∣∣

u ′u

)−1

∝ (u ′MZu)−1� (A.15)

Substituting (A.12) and (A.15) into (A.11) yields

p(� | y,X ,Z ) ∝ (u ′u)− T−m
2

(
u ′MZu

) T−k−m
2 , (A.16)

which is a t -density multiplied by a polynomial, or

p(� | y,X ,Z ) ∝
(
u ′MZu
u ′u

) T−k−m
2

(u ′u)− k
2 , (A.17)

where the ratio u′MZ u
u′u < 1 for any �; for “large enough” � (i.e., ||�|| large

enough) the ratio u′MZ u
u′u is bounded from below and above by ratios of

positive eigenvalues of X ′MZX and X ′X . Therefore, the tail behavior and
properness of p(� | y,X ,Z ) are determined by the factor (u ′u)− k

2 , which
is an m -dimensional t density with r = k − m integer degrees of freedom.
Therefore, p(� | y,X ,Z ) is an improper density for k ≤ m (exact or under-
identification), and a proper density for k > m (over-identification).

The marginal posterior of � is derived by integrating (A.6)

p
(
� | y,X ,Z

) ∝ |V ′V |− T
2

(
(T − m) s2

�̂

)− T
2

∣∣∣∣∣X ′MVX
s2
�̂

∣∣∣∣∣
−1/2
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×
∫
�

∣∣∣∣∣X ′MVX
s2
�̂

∣∣∣∣∣
1/2

1 +
(
� − �̂

)′
(X ′MVX )

(
� − �̂

)
(T − m) s2

�̂


− T

2

d�,

(A.18)

∝ |V ′V |− T
2

(
s2
�̂

)− T
2

∣∣∣∣∣X ′MVX
s2
�̂

∣∣∣∣∣
−1/2

∝ |V ′V |− T
2

(
s2
�̂

)− T−m
2 ∣∣X ′MVX

∣∣−1/2
, (A.19)

where the integrand in (A.18) is a multivariate t density. Inserting∣∣X ′MVX
∣∣ = ∣∣V ′MXV

∣∣ |X ′X |∣∣V ′V
∣∣�2

�̂
(A.20)

∝ | (MXy
)′
MMV X

(
MXy

) | = | (MXV )′ MMyX (MXv) | (y
′MXy)

|V ′MXV |
∝ |V ′M(y X )V |

|V ′MXV | (A.21)

into (A.19) yields

p
(
� | y,X ,Z

) ∝ |V ′V |−T /2

( |V ′MXV |
|V ′V |

)−1/2 ∣∣V ′M(y X )V
∣∣ T−m

2
∣∣V ′MXV

∣∣− T−m
2 �

(A.22)

Substituting

MXV = MX (X − Z�) = MXZ� (A.23)

M(y X )v = M(y X ) (X − Z�) = M(y X )Z� (A.24)

into (A.22) yields

p
(
� | y,X ,Z

) ∝ |V ′V |− T−1
2

∣∣�′Z ′MXZ�
∣∣ T−m−1

2
∣∣�′Z ′M(y X )Z�

∣∣− T−m
2 , (A.25)

a matrix t -density multiplied by a rational function, or

p
(
� | y,X ,Z

) ∝ |V ′V |− T−1
2

( ∣∣�′Z ′MXZ�
∣∣∣∣�′Z ′M(yX )Z�
∣∣
) T−m

2 ∣∣�′Z ′MXZ�
∣∣− 1

2 , (A.26)

where |V ′V |− T−1
2 is a density kernel of a proper matrix t distribution of

which the first few moments are finite (given that T is not very small), and
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the ratio
∣∣�′Z ′MX Z�

∣∣∣∣∣�′Z ′M(y X )Z�
∣∣∣ is bounded from below and above by ratios of positive

eigenvalues of Z ′MXZ and Z ′M(y X )Z . So, the properness of p
(
� | y,X ,Z

)
is

determined by the factor
∣∣�′Z ′MXZ�

∣∣− 1
2 , which is integrable if and only if

k > m (over-identification). In the latter case, the first few moments—i.e.,
at least up to the fourth moment—exist (given that T is not very small).
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