1,074 research outputs found

    Impacts du changement climatique sur l'hydrologie et la gestion des ressources en eau du bassin de la Meuse (synthèse bibliographique)

    Get PDF
    Impacts of climate change on hydrological regimes and water resources management in the Meuse catchment. A review. This review examines the consequences of climate change on the hydrology of the Meuse catchment and on various water-related socio-economic sectors. It sums up the different modeling approaches in hydrological modeling, placing emphasis on current modeling assumptions and the restrictions inherent within them. It is useful to consider land use evolution and adapted management within the context of climate change, particularly with reference to agriculture. More specifically, a broader usage of physically-based hydrological models would be useful in order to represent climate change scenarios and possible adaptation tracks at the catchment scale. These physically-based hydrological models are able to represent a wide range of phenomena occurring in the water-soil-plant continuum. They thus allow a refinement of global hydrological solutions at the catchment scale, especially during low flow periods. Moreover, such models pave the way for the analysis of scenarios aimed at creating adaptation in the use and management of soils

    Climate reconstruction based on archaeological bivalve shells

    Get PDF
    Several years of biogeochemical research on bivalve shells yielded in clear proxyrecords carrying potential for reconstruction of paleoseasonal trends in coastal environments. However, the interpretation of the proxy signals is still often problematic. Proxy concentrations can be influenced by several environmental parameters and by physiological processes. With more complex models these problems can be tackled. Two strategies are followed; (1) a statistical black-box model is being developed in parallel with (2) a physiological white-box model.The statistical black-box model can be described as a non-linear multi-proxy model. It is based on chemical measurements in modern bivalve shells and consists of the construction of a curve in a multi-dimensional space. The model describes the variations in the chemical signature of the shell during a full year cycle. The shortest distance from any other data point (e.g. a fossil shell) to the model will give a time point estimation in the annual cycle, which can further be linked to environmental parameters. At present our model approach achieves quite accurate SST reconstructions.A white box model is crucial for understanding the physiological processes and for an unambiguous interpretation of the proxy records. We investigated, in a first phase, in situ the influences of environmental parameters and physiology on the incorporation of proxies in Mytilus edulis at a well documented wave breaker site. In a second phase, in vitro culturing experiments under controlled laboratory conditions were carried out. Experiments were carried out at 8°C and 16°C and at salinities of 18‰ and 28‰. During these experiments mussels were fed under high and low supply regimes. By combining these in situ and in vitro approaches a white box multi-proxy model is generated for the reconstruction of SST and SSS

    On the criticality of inferred models

    Full text link
    Advanced inference techniques allow one to reconstruct the pattern of interaction from high dimensional data sets. We focus here on the statistical properties of inferred models and argue that inference procedures are likely to yield models which are close to a phase transition. On one side, we show that the reparameterization invariant metrics in the space of probability distributions of these models (the Fisher Information) is directly related to the model's susceptibility. As a result, distinguishable models tend to accumulate close to critical points, where the susceptibility diverges in infinite systems. On the other, this region is the one where the estimate of inferred parameters is most stable. In order to illustrate these points, we discuss inference of interacting point processes with application to financial data and show that sensible choices of observation time-scales naturally yield models which are close to criticality.Comment: 6 pages, 2 figures, version to appear in JSTA

    Genetic and demographic vulnerability of adder populations: Results of a genetic study in mainland Britain

    Get PDF
    Genetic factors are often overlooked in conservation planning, despite their importance in small isolated populations. We used mitochondrial and microsatellite markers to investigate population genetics of the adder (Vipera berus) in southern Britain, where numbers are declining. We found no evidence for loss of heterozygosity in any of the populations studied. Genetic diversity was comparable across sites, in line with published levels for mainland Europe. However, further analysis revealed a striking level of relatedness. Genetic networks constructed from inferred first degree relationships suggested a high proportion of individuals to be related at a level equivalent to that of half-siblings, with rare inferred full-sib dyads. These patterns of relatedness can be attributed to the high philopatry and low vagility of adders, which creates high local relatedness, in combination with the polyandrous breeding system in the adder, which may offset the risk of inbreeding in closed populations. We suggest that reliance on standard genetic indicators of inbreeding and diversity may underestimate demographic and genetic factors that make adder populations vulnerable to extirpation. We stress the importance of an integrated genetic and demographic approach in the conservation of adders, and other taxa of similar ecology

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Fussing About Fission: Defining Variety Among Mainstream and Exotic Apicomplexan Cell Division Modes

    Get PDF
    Cellular reproduction defines life, yet our textbook-level understanding of cell division is limited to a small number of model organisms centered around humans. The horizon on cell division variants is expanded here by advancing insights on the fascinating cell division modes found in the Apicomplexa, a key group of protozoan parasites. The Apicomplexa display remarkable variation in offspring number, whether karyokinesis follows each S/M-phase or not, and whether daughter cells bud in the cytoplasm or bud from the cortex. We find that the terminology used to describe the various manifestations of asexual apicomplexan cell division emphasizes either the number of offspring or site of budding, which are not directly comparable features and has led to confusion in the literature. Division modes have been primarily studied in two human pathogenic Apicomplexa, malaria-causing Plasmodium spp. and Toxoplasma gondii, a major cause of opportunistic infections. Plasmodium spp. divide asexually by schizogony, producing multiple daughters per division round through a cortical budding process, though at several life-cycle nuclear amplifications stages, are not followed by karyokinesis. T. gondii divides by endodyogeny producing two internally budding daughters per division round. Here we add to this diversity in replication mechanisms by considering the cattle parasite Babesia bigemina and the pig parasite Cystoisospora suis. B. bigemina produces two daughters per division round by a “binary fission” mechanism whereas C. suis produces daughters through both endodyogeny and multiple internal budding known as endopolygeny. In addition, we provide new data from the causative agent of equine protozoal myeloencephalitis (EPM), Sarcocystis neurona, which also undergoes endopolygeny but differs from C. suis by maintaining a single multiploid nucleus. Overall, we operationally define two principally different division modes: internal budding found in cyst-forming Coccidia (comprising endodyogeny and two forms of endopolygeny) and external budding found in the other parasites studied (comprising the two forms of schizogony, binary fission and multiple fission). Progressive insights into the principles defining the molecular and cellular requirements for internal vs. external budding, as well as variations encountered in sexual stages are discussed. The evolutionary pressures and mechanisms underlying apicomplexan cell division diversification carries relevance across Eukaryota

    Yield conditions for deformation of amorphous polymer glasses

    Full text link
    Shear yielding of glassy polymers is usually described in terms of the pressure-dependent Tresca or von Mises yield criteria. We test these criteria against molecular dynamics simulations of deformation in amorphous polymer glasses under triaxial loading conditions that are difficult to realize in experiments. Difficulties and ambiguities in extending several standard definitions of the yield point to triaxial loads are described. Two definitions, the maximum and offset octahedral stresses, are then used to evaluate the yield stress for a wide range of model parameters. In all cases, the onset of shear is consistent with the pressure-modified von Mises criterion, and the pressure coefficient is nearly independent of many parameters. Under triaxial tensile loading, the mode of failure changes to cavitation.Comment: 9 pages, 8 figures, revte

    Bayesian Analysis of Instrumental Variable Models: Acceptance-Rejection within Direct Monte Carlo

    Get PDF
    We discuss Bayesian inferential procedures within the family of instrumental variables regression models and focus on two issues: existence conditions for posterior moments of the parameters of interest under a flat prior and the potential of Direct Monte Carlo (DMC) approaches for efficient evaluation of such possibly highly non-elliptical posteriors. We show that, for the general case of m endogenous variables under a flat prior, posterior moments of order r exist for the coefficients reflecting the endogenous regressors' effect on the dependent variable, if the number of instruments is greater than m +r, even though there is an issue of local non-identification that causes non-elliptical shapes of the posterior. This stresses the need for efficient Monte Carlo integration methods. We introduce an extension of DMC that incorporates an acceptance-rejection sampling step within DMC. This Acceptance-Rejection within Direct Monte Carlo (ARDMC) method has the attractive property that the generated random drawings are independent, which greatly helps the fast convergence of simulation results, and which facilitates the evaluation of the numerical accuracy. The speed of ARDMC can be easily further improved by making use of parallelized computation using multiple core machines or computer clusters. We note that ARDMC is an analogue to the well-known "Metropolis-Hastings within Gibbs" sampling in the sense that one 'more difficult' step is used within an 'easier' simulation method. We compare the ARDMC approach with the Gibbs sampler using simulated data and two empirical data sets, involving the settler mortality instrument of Acemoglu et al. (2001) and father's education's instrument used by Hoogerheide et al. (2012a). Even without making use of parallelized computation, an efficiency gain is observed both under strong and weak instruments, where the gain can be enormous in the latter case

    Structure of the outer layers of cool standard stars

    Get PDF
    Context: Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims: Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. Methods: The observational spectral energy distributions are compared with the theoretical predictions of the MARCS atmosphere models for a sample of 9 K- and M-giants. The discrepancies found are explained using basic models for flux emission originating from a chromosphere or an ionized wind. Results: For 7 out of 9 sample stars, a clear flux excess is detected at (sub)millimeter and/or centimeter wavelengths. The precise start of the excess depends upon the star under consideration. The flux at wavelengths shorter than about 1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionized wind is the main flux contributor at longer wavelengths. Conclusions: Although the optical to mid-infrared spectrum of the studied K- and M-giants is well represented by a radiative equilibrium atmospheric model, the presence of a chromosphere and/or ionized stellar wind at higher altitudes dominates the spectrum in the (sub)millimeter and centimeter wavelength ranges. The presence of a flux excess also has implications on the role of these stars as fiducial spectrophotometric calibrators in the (sub)millimeter and centimeter wavelength range.Comment: 13 pages, 6 figures, 7 pages of online material, submitted to A&
    corecore