24 research outputs found

    Influence of hydrological connectivity on winter limnology in 1 floodplain lakes 2 of the Saskatchewan River Delta, SK

    Get PDF
    Globally, hydrological connectivity between rivers and their floodplains has been reduced by river flow management and land transformation. The Saskatchewan River Delta is North America’s largest inland delta and a hub for fish and fur production. To determine the influence of connectivity on limnology within this northern floodplain, water chemistry and stable isotopes (δ18O and δ236 H) were analyzed during the winter of 2014 in shallow lakes along a hydrological gradient. A total of five lake connectivity categories were determined by optical remote-sensing images of surface water coverage area from years of varying flood intensities. Accuracy of categories were verified by degree of 18O and 239 H enrichment within lakes. Both isotopes showed marked successional enrichment between connectivity categories with more isolated lakes exhibiting greater enrichment. Water chemistry in lakes with greater connectivity to the main channel were characterized by higher pH, dissolved oxygen, nitrates and sulfates, and lower total nitrogen, total phosphorus, and ammonium, compared to more isolated lakes. These findings illustrate how connectivity influences water chemistry in northern floodplain lakes and how it might determine the suitability of these lakes as winter refuge for fishes. Additionally, our study provides supporting evidence for the effective use of optical remote sensing imagery, an inexpensive and accessible source of data for researchers, when determining connectivity characteristics of large northern floodplain systems. Additionally, this study provides further evidence that the inundation of floodplain lakes by river water during peak discharge has an impact on the conditions within the lakes long into the winter ice-cover season. Understanding the year-round influence of river-floodplain connection is imperative for assessing potential impacts of climate change and future water regulation on such ecosystem

    Untersuchungen von Beugesehnennähten mittels Bildsequenzanalyse im Experiment

    Get PDF
    Im Rahmen dieser Arbeit werden die Ergebnisse aus Zugversuchen an Schweinesehnen, die mit verschiedenen Nahtmaterialien und den gängigen Nahttechniken für Beugesehnen der Hand genäht wurden, vorgestellt. Schwerpunkt der Untersuchungen ist die Ermittlung und Dokumentation der Reißfestigkeit der Naht und die Spaltbildung an der Kontaktstelle der genähten Sehnenstümpfe mittels biomechanischer Versuche. Das Eintreten der Spaltbildung und des Nahtrisses wird durch videotechnische Aufzeichnungen, die den eigentlichen Messvorgang an der Universalprüfmaschine begleiten, exakt dokumentiert (Bildsequenzanalyse). Die Bildsequenzanalyse stellt gegenüber den in der Literatur dokumentierten Methoden eine wesentliche Fort- bzw. Neuentwicklung zur Ermittlung der Spaltstabilität und der Reißfestigkeit von genähten Sehnen dar. Die Auswertung der Versuche mittels Bildsequenzanalyse wurde für 12 verschiedene Nahttechnik/Nahtmaterial-Kombinationen durchgeführt. Nach Entwicklung und Anfertigung einer neuen Einspannvorrichtung für die Sehnen, die eine optimale Festhaltung der Sehnenstümpfe gewährleistete, erfolgte die systematische Durchführung von Bildsequenzanalysen für gängige Sehnennaht-Techniken mit verschiedenen Fäden. Auf Grundlage der biomechanischen Versuche und der Weiterentwicklung bisheriger Kenntnisse zur Beugesehnennaht konnte im Rahmen dieser Arbeit eine optimierte bzw. eine neue Nahttechnik entwickelt werden (Marburger Sehnennaht I und II), die eine frühe postoperative Mobilisierung durch entsprechende Nahtfestigkeiten ermöglicht, eine gute Gleitfunktion aufweist sowie durch Erhaltung der Gefäßversorgung der Sehne einen sicheren Heilungsprozess gewährleistet. Die Ergebnisse der biomechanischen Versuche mit der Marburger Sehnennaht I und II sind in dieser Arbeit detailliert dokumentiert. Der Vergleich mit den gängigen Sehnennaht-Techniken zeigt, dass die Marburger Sehnennaht eine hohe Reißfestigkeit und die beste Spaltstabilität besitzt

    Beaver-mediated methane emission: The effects of population growth in Eurasia and the Americas

    No full text
    Globally, greenhouse gas budgets are dominated by natural sources, and aquatic ecosystems are a prominent source of methane (CH4) to the atmosphere. Beaver (Castor canadensis and Castor fiber) populations have experienced human-driven change, and CH4 emissions associated with their habitat remain uncertain. This study reports the effect of near extinction and recovery of beavers globally on aquatic CH4 emissions and habitat. Resurgence of native beaver populations and their introduction in other regions accounts for emission of 0.18–0.80 Tg CH4 year−1 (year 2000). This flux is approximately 200 times larger than emissions from the same systems (ponds and flowing waters that became ponds) circa 1900. Beaver population recovery was estimated to have led to the creation of 9500–42 000 km2 of ponded water, and increased riparian interface length of >200 000 km. Continued range expansion and population growth in South America and Europe could further increase CH4 emissions

    Who Smells? Forecasting Taste and Odor in a Drinking Water Reservoir

    Get PDF
    Taste and odor problems can impede public trust in drinking water and impose major costs on water utilities. The ability to forecast taste and odor events in source waters, in advance, is shown for the first time in this paper. This could allow water utilities to adapt treatment, and where effective treatment is not available, consumers could be warned. A unique 24-year time series, from an important drinking water reservoir in Saskatchewan, Canada, is used to develop forecasting models of odor using chlorophyll <i>a</i>, turbidity, total phosphorus, temperature, and the following odor producing algae taxa: <i>Anabaena</i> spp., <i>Aphanizemenon</i> spp., <i>Oscillatoria</i> spp., Chlorophyta, <i>Cyclotella</i> spp., and <i>Asterionella</i> spp. We demonstrate, using linear regression and random forest models, that odor events can be forecast at 0–26 week time lags, and that the models are able to capture a significant increase in threshold odor number in the mid-1990s. Models with a fortnight time-lag show a high predictive capacity (<i>R</i><sup>2</sup> = 0.71 for random forest; 0.52 for linear regression). Predictive skill declines for time lags from 0 to 15 weeks, then increases again, to <i>R</i><sup>2</sup> values of 0.61 (random forest) and 0.48 (linear regression) at a 26-week lag. The random forest model is also able to provide accurate forecasting of TON levels requiring treatment 12 weeks in advance93% true positive rate with a 0% false positive rate. Results of the random forest model demonstrate that phytoplankton taxonomic data outperform chlorophyll <i>a</i> in terms of predictive importance

    La Rioja : diario político: Año VIII Número 2311 - 1896 agosto 19

    Get PDF
    Globally, hydrological connectivity between rivers and their floodplains has been reduced by river flow management and land transformation. The Saskatchewan River Delta is North America’s largest inland delta and a hub for fish and fur production. To determine the influence of connectivity on limnology within this northern floodplain, water chemistry and stable isotopes (δ18O and δ2H) were analyzed during the winter of 2014 in 26 shallow lakes along a hydrological gradient. A total of five lake connectivity categories were determined by optical remote-sensing images of surface water coverage area from years of varying flood intensities. Accuracy of categories were verified by degree of 18O and 2H enrichment within lakes. Both isotopes showed marked successional enrichment between connectivity categories with more isolated lakes exhibiting greater enrichment. Water chemistry in lakes with greater connectivity to the main channel were characterized by higher pH, dissolved oxygen, nitrates and sulfates, and lower total nitrogen, total phosphorus, and ammonium, compared to more isolated lakes. These findings illustrate how connectivity influences water chemistry in northern floodplain lakes and how it might determine the suitability of these lakes as winter refuge for fishes. Additionally, our study provides supporting evidence for the effective use of optical remote sensing imagery, an inexpensive and accessible source of data for researchers, when determining connectivity characteristics of large northern floodplain systems. Additionally, this study provides further evidence that the inundation of floodplain lakes by river water during peak discharge has an impact on the conditions within the lakes long into the winter ice-cover season. Understanding the year-round influence of river-floodplain connection is imperative for assessing potential impacts of climate change and future water regulation on such ecosystems.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore