8 research outputs found
Pathways to wheat self-sufficiency in Africa
A growing urban population and dietary changes increased wheat import bills in Africa to 9% per year. Though wheat production in the continent has been increasing over the past decades, to varying degrees depending on regions, this has not been commensurate with the rapidly increasing demand for wheat. Analyses of wheat yield
gaps show that there is ample opportunity to increase wheat production in Africa through improved genetics and
agronomic practices. Doing so would reduce import dependency and increase wheat self-sufficiency at national
level in many African countries. In view of the uncertainties revealed by the global COVID-19 pandemic, extreme
weather events, and world security issues, national policies in Africa should re-consider the value of self-sufficiency in production of staple food crops, specifically wheat. This is particularly so for areas where water-limited wheat yield gaps can be narrowed through intensification on existing cropland and judicious expansion of rainfed and irrigated wheat areas. Increasing the production of other sources of calories (and proteins) should also be considered to reduce dependency on wheat imports
A methodological approach for assessing cross-site landscape change: understanding socio-ecological systems
The expansion of agriculture has resulted in large-scale habitat loss, the fragmentation of forests, significant losses in biological diversity and negative impacts on many ecosystem services. In this paper, we highlight the Agrarian Change Project, a multi-disciplinary research initiative, that applies detailed socio-ecological methodologies in multi-functional landscapes, and assess the subsequent implications for conservation, livelihoods and food security. Specifically, the research focuses on land use impacts in locations which exhibit various combinations of agricultural modification/change across a forest transition gradient in six tropical landscapes, in Zambia, Burkina Faso, Cameroon, Ethiopia, Indonesia and Bangladesh. These methods include integrated assessments of the perceptions of ecosystem service provision, tree cover loss and gain, relative poverty, diets and agricultural patterns of change. Although numerous surveys on rural livelihoods are undertaken each year, often at great cost, many are hampered by weaknesses in methods and thus may not reflect rural realities. We attempt to highlight how integrating broader socio-ecological methods can be used to fill in those gaps and ensure such realities are indeed captured. Early findings suggest that the transition from a forested landscape to a more agrarian dominated system does not necessarily result in better livelihood outcomes and there may be unintended consequences of forest and tree cover removal. These include the loss of access to grazing land, loss of dietary diversity and the loss of ecosystem services/forest products
Genetic Variation of Zinc and Iron Concentration in Normal, Provitamin A and Quality Protein Maize under Stress and Non-Stress Conditions
The negative impacts of zinc (Zn) and iron (Fe) deficiency due to over-reliance on monotonous cereal-based diets are well-documented. Increasing micronutrient densities in maize is currently among top breedersâ priorities. Here, 77 single-cross Zn-enhanced hybrids with normal, provitamin A and quality protein maize genetic backgrounds were evaluated together with seven checks for grain Zn and Fe concentration and agronomic traits under optimum, low nitrogen (N) and managed drought conditions. Results showed a fairly wide variability for grain Zn (10.7â57.8 mg kgâ1) and Fe (7.1â58.4 mg kgâ1) concentration amongst the hybrids, across management conditions. Notable differences in Zn concentration were observed between the Zn-enhanced quality protein maize (QPM) (31.5 mg kgâ1), Zn-enhanced provitamin A maize (28.5 mg kgâ1), Zn-enhanced normal maize (26.0 mg kgâ1) and checks (22.9 mg kgâ1). Although checks showed the lowest micronutrient concentration, they were superior in grain yield (GY) performance, followed by Zn-enhanced normal hybrids. Genotypes grown optimally had higher micronutrient concentrations than those grown under stress. Genotype Ă environment interaction (G Ă E) was significant (p †0.01) for GY, grain Zn and Fe concentration, hence micronutrient-rich varieties could be developed for specific environments. Furthermore, correlation between grain Zn and Fe was positive and highly significant (r = 0.97; p †0.01) suggesting the possibility of improving these traits simultaneously. However, the negative correlation between GY and grain Zn (r = â0.44; p †0.01) and between GY and grain Fe concentration (r = â0.43; p †0.01) was significant but of moderate magnitude, suggesting slight dilution effects. Therefore, development of high yielding and micronutrient-dense maize cultivars is possible, which could reduce the highly prevalent micronutrient deficiency in sub-Saharan Africa (SSA)
Implementation of permanent raised beds contributes to increased crop yield and profitability in the northeastern Tigray region, Ethiopia
A major problem faced by small-scale farmers in northern Ethiopia is reduced crop yield due to increasing soil degradation resulting from repeated tillage and inadequate agronomic management practices. These practices have left soils and rainfed crops susceptible to hazardous climatic events such as droughts. Sustainable farm practices such as minimum tillage and surface residue retention have been shown to improve soil health and crop productivity. The objectives of this field study were thus to evaluate the impacts of conservation agriculture (CA) practices on crop yield and economic productivity over 6 years in the eastern Tigray region of northern Ethiopia. Using a barley-wheat rotation from 2010 to 2016, the applied treatments were (i) permanent raised beds (PRB); (2) semi-permanent raised beds (SPB) and (3) conventional tillage (CT). Average barley and wheat biomass and grain yields in PRB and SPB treatments were consistently greater than yields under CT each year. In addition, the highest marginal rate of return was obtained in PRB and SPB compared to CT in all years (2010-2016). These results suggest that the CA practices of PRB and SPB can improve crop yield and profit compared to CT practices in the Tigray region
A methodological approach for assessing cross-site landscape change : understanding socio-ecological systems
The expansion of agriculture has resulted in large-scale habitat loss, the fragmentation of forests, significant losses in biological diversity and negative impacts on many ecosystem services. In this paper, we highlight the Agrarian Change Project, a multi-disciplinary research initiative, that applies detailed socio-ecological methodologies in multi-functional landscapes, and assess the subsequent implications for conservation, livelihoods and food security. Specifically, the research focuses on land use impacts in locations which exhibit various combinations of agricultural modification/change across a forest transition gradient in six tropical landscapes, in Zambia, Burkina Faso, Cameroon, Ethiopia, Indonesia and Bangladesh. These methods include integrated assessments of the perceptions of ecosystem service provision, tree cover loss and gain, relative poverty, diets and agricultural patterns of change. Although numerous surveys on rural livelihoods are undertaken each year, often at great cost, many are hampered by weaknesses in methods and thus may not reflect rural realities. We attempt to highlight how integrating broader socio-ecological methods can be used to fill in those gaps and ensure such realities are indeed captured. Early findings suggest that the transition from a forested landscape to a more agrarian dominated system does not necessarily result in better livelihood outcomes and there may be unintended consequences of forest and tree cover removal. These include the loss of access to grazing land, loss of dietary diversity and the loss of ecosystem services/forest products