845 research outputs found

    The Central Beam and Cycle Management of the CERN Accelerator Complex

    Get PDF
    The efficient exploitation of the CERN accelerator complex in the future, with new cycles to fill the LHC and possibly a dedicated neutrino cycle in addition to the actual fixed-target program, will require a rapid and coordinated response to adapt to the changing user requests. This paper reviews the general sequencing problem and describes some preliminary concepts and algorithms suitable for managing a network of accelerators. The benefits derived from the architecture that has already been implemented in the PS complex, since its start up in March, are presented. The last accelerator in the injector chain, the SPS, is currently running fixed super-cycles. Its event-based timing system will be integrated into the central control by the year 2001 in a way that is transparent to the SPS equipment

    Managing the Real-time Behaviour of a Particle Beam Factory: The CERN Proton Synchrotron Complex and its Timing System Principles

    Get PDF
    In the CERN 26 Gev Proton Synchrotron (PS) accelerator network, super-cycles are defined as sequences of different kinds of beams produced repetitively [Fig.1]. Each of these beams is characterised by attributes such as particle type, beam energy, its route through the accelerator network, and the final end user. The super-cycle is programmed by means of an editor through which the operational requirements of the physics programme can be described. Each beam in the normal sequence may later be replaced by a set of spare beams automatically depending on software and hardware interlocks and requests presented to the Master Timing Generator (MTG [Glos. 1]). The MTG calculates at run time how each beam is to be manufactured, and sends a telegram [Glos. 3] message to each accelerator, just before each cycle, describing what it should be doing now and during the next cycle. These messages, together with key machine timing events and clocks are encoded onto a timing distribution drop net where they are distributed around the PS complex to VME-standard timing reception TG8 [Glos. 8] modules which generate output pulses and VME bus interrupts for task synchronisation. The TG8 modules are able to use accelerator-related clocks such as the incremental/ decremental magnetic field trains, or the beam revolution and radio frequencies to produce high precision beam synchronous timing. Timing Surveillance Modules (TSM) monitor these timings, which give high precision interval measurements used for the machine tuning, beam diagnostics, and fault detection systems

    Optimizing passive acoustic sampling of bats in forests

    Get PDF
    Passive acoustic methods are increasingly used in biodiversity research and monitoring programs because they are cost-effective and permit the collection of large datasets. However, the accuracy of the results depends on the bioacoustic characteristics of the focal taxa and their habitat use. In particular, this applies to bats which exhibit distinct activity patterns in three-dimensionally structured habitats such as forests. We assessed the performance of 21 acoustic sampling schemes with three temporal sampling patterns and seven sampling designs. Acoustic sampling was performed in 32 forest plots, each containing three microhabitats: forest ground, canopy, and forest gap. We compared bat activity, species richness, and sampling effort using species accumulation curves fitted with the clench equation. In addition, we estimated the sampling costs to undertake the best sampling schemes. We recorded a total of 145,433 echolocation call sequences of 16 bat species. Our results indicated that to generate the best outcome, it was necessary to sample all three microhabitats of a given forest location simultaneously throughout the entire night. Sampling only the forest gaps and the forest ground simultaneously was the second best choice and proved to be a viable alternative when the number of available detectors is limited. When assessing bat species richness at the 1-km(2) scale, the implementation of these sampling schemes at three to four forest locations yielded highest labor cost-benefit ratios but increasing equipment costs. Our study illustrates that multiple passive acoustic sampling schemes require testing based on the target taxa and habitat complexity and should be performed with reference to cost-benefit ratios. Choosing a standardized and replicated sampling scheme is particularly important to optimize the level of precision in inventories, especially when rare or elusive species are expected

    (Multi)wavelets increase both accuracy and efficiency of standard Godunov-type hydrodynamic models

    Get PDF
    This paper presents a scaled reformulation of a robust second-order Discontinuous Galerkin (DG2) solver for the Shallow Water Equations (SWE), with guiding principles on how it can be naturally extended to fit into the multiresolution analysis of multiwavelets (MW). Multiresolution analysis applied to the flow and topography data enables the creation of an adaptive MWDG2 solution on a non-uniform grid. The multiresolution analysis also permits control of the adaptive model error by a single user-prescribed parameter. This results in an adaptive MWDG2 solver that can fully exploit the local (de)compression of piecewise-linear modelled data, and from which a first-order finite volume version (FV1) is directly obtainable based on the Haar wavelet (HFV1) for local (de)compression of piecewise-constant modelled data. The behaviour of the adaptive HFV1 and MWDG2 solvers is systematically studied on a number of well-known hydraulic tests that cover all elementary aspects relevant to accurate, efficient and robust modelling. The adaptive solvers are run starting from a baseline mesh with a single element, and their accuracy and efficiency are measured referring to standard FV1 and DG2 simulations on the uniform grid involving the finest resolution accessible by the adaptive solvers. Our findings reveal that the MWDG2 solver can achieve the same accuracy as the DG2 solver but with a greater efficiency than the FV1 solver due to the smoothness of its piecewise-linear basis, which enables more aggressive coarsening than with the piecewise-constant basis in the HFV1 solver. This suggests a great potential for the MWDG2 solver to efficiently handle the depth and breadth in resolution variability, while also being a multiresolution mesh generator. Accompanying model software and simulation data are openly available online

    An Integration Testing Facility for the CERN Accelerator Controls System

    Get PDF
    A major effort has been invested in the design, development, and deployment of the LHC Control System. This large control system is made up of a set of core components and dependencies, which although tested individually, are often not able to be tested together on a system capable of representing the complete control system environment, including hardware. Furthermore this control system is being adapted and applied to CERN's whole accelerator complex, and in particular for the forthcoming renovation of the PS accelerators. To ensure quality is maintained as the system evolves, and toimprove defect prevention, the Controls Group launched a project to provide a dedicated facility for continuous, automated, integration testing of its core components to incorporate into its production process. We describe the project, initial lessons from its application, status, and future directions

    The SPLASH Survey: Quiescent Galaxies Are More Strongly Clustered but Are Not Necessarily Located in High-density Environments

    Get PDF
    We use the stellar-mass-selected catalog from the Spitzer Large Area Survey with Hyper-Suprime-Cam (SPLASH) in the COSMOS field to study the environments of galaxies via galaxy density and clustering analyses up to z ~ 2.5. The clustering strength of quiescent galaxies exceeds that of star-forming galaxies, implying that quiescent galaxies are preferentially located in more massive halos. When using local density measurement, we find a clear positive quiescent fraction–density relation at z 1.5, the quiescent fraction depends little on the local density, even though clustering shows that quiescent galaxies are in more massive halos. We argue that at high redshift the typical halo size falls below 10^(13)M⊙, where intrinsically the local density measurements are so varied that they do not trace the halo mass. Our results thus suggest that in the high-redshift universe, halo mass may be the key in quenching the star formation in galaxies, rather than the conventionally measured galaxy density
    corecore