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Abstract  13 

This paper presents a scaled reformulation of a robust second-order Discontinuous Galerkin (DG2) solver 14 

for the Shallow Water Equations (SWE), with guiding principles on how it can be naturally extended to fit 15 

into the multiresolution analysis of multiwavelets (MW). Multiresolution analysis applied to the flow and 16 

topography data enables the creation of an adaptive MWDG2 solution on a non-uniform grid. The 17 

multiresolution analysis also permits control of the adaptive model error by a single user-prescribed 18 

parameter. This results in an adaptive MWDG2 solver that can fully exploit the local (de)compression of 19 

piecewise-linear modelled data, and from which a first-order finite volume version (FV1) is directly 20 

obtainable based on the Haar wavelet (HFV1) for local (de)compression of piecewise-constant modelled 21 

data. The behaviour of the adaptive HFV1 and MWDG2 solvers is systematically studied on a number of 22 

well-known hydraulic tests that cover all elementary aspects relevant to accurate, efficient and robust 23 

modelling. The adaptive solvers are run starting from a baseline mesh with a single element, and their 24 

accuracy and efficiency are measured referring to standard FV1 and DG2 simulations on the uniform grid 25 

involving the finest resolution accessible by the adaptive solvers. Our findings reveal that the MWDG2 26 

solver can achieve the same accuracy as the DG2 solver but with a greater efficiency than the FV1 solver 27 

due to the smoothness of its piecewise-linear basis, which enables more aggressive coarsening than with 28 

the piecewise-constant basis in the HFV1 solver. This suggests a great potential for the MWDG2 solver to 29 

efficiently handle the depth and breadth in resolution variability, while also being a multiresolution mesh 30 

generator. Accompanying model software and simulation data are openly available online.  31 

 32 
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 Introduction  37 

Explicit Godunov-type finite volume schemes [1] have become standard in hydraulic models [2]. In 38 

essence, the Finite Volume (FV) foundation uses a piecewise-constant representation of flow 39 

variables over a local mesh element in a first-order accurate framework (FV1). Piecewise-constant 40 

data can be evolved element-wise driven by spatial flux exchange through element boundaries, 41 

while only needing data from adjacent neighbours to complete Riemann flux calculations. This 42 

locality in storage and evolution of piecewise constant data offers practical advantages such as 43 

suitability for parallelisation [3, 4] and makes wetting and drying a lot easier to handle [5, 6]. 44 

However, the FV1 approach suffers from excessive numerical diffusion, which can only be alleviated 45 

by using fine resolution meshes, often leading to unacceptable computational costs and meshing 46 

inflexibilities over large spatial domains. Attempts to incorporate classical adaptive mesh refinement 47 

strategies within the FV1 approach are shown to cause adverse effects, such as keeping a coarsest 48 

mesh resolution that is fine enough, increasing model sensitivity to tuning many adaptivity 49 

parameters, and impacting overall conservativeness [7-10]. These adverse effects are not alleviated 50 

with higher-order FV methods that involve non-local interpolation of piecewise-constant data [11, 51 

12]. A numerical modelling strategy is still desired that can inherently automate and initialise mesh 52 

resolution and improve runtime efficiency within the FV1 approach. 53 

The Discontinuous Galerkin (DG) method extends the foundation of the FV1 approach by 54 

shaping local piecewise-polynomial solutions from a discrete (element-wise) formulation of the 55 

conservative model equation(s). DG methods significantly reduce numerical diffusion even on very 56 

coarse meshes (e.g. at a grid resolution exceeding 10 m2) and have excellent conservation properties 57 

[13-16]. Compared to a FV counterpart, the DG method has a much larger cost per mesh element in 58 

terms of data storage and computing time, and such cost is proportional to the desired order-of-59 

accuracy. Even with a simplified second-order DG (DG2) method for practical conveniences [17], 60 

runtime costs on uniform meshes are 7-15 times greater than with first- and second-order accurate 61 

FV alternatives [14, 15]. Classical adaptive mesh refinement strategies with DG methods do not 62 



seem a practical way forward because they still suffer from many of the adverse effects reported for 63 

the FV1 method [8, 18]. A sparse numerical modelling strategy, which can make DG2 as efficient as 64 

FV1, is thus highly desired to increase accuracy and coverage in handling high-resolution modelled 65 

data. 66 

Adaptive wavelet-based schemes offer an attractive route to overcome many of the adverse 67 

effects observed in classical adaptive mesh refinement methods [9-12, 18, 19]. When applied to the 68 

reformulation of FV1 models, these schemes introduce a multiresolution analysis to (de)compress 69 

piecewise-constant modelled data mapped by the Haar wavelet from within the local basis of the 70 

FV1 method [20-25]. We term this Haar-wavelet variant of FV1 the HFV1 method. Haleem et al. [26] 71 

were the first to propose an HFV1 approach for solving the shallow water equations (SWE) with 72 

irregular topography and wet-dry fronts, demonstrating that HFV1 directly inherits the robustness 73 

properties of the underlying FV1 scheme. However, Haleem et al. [26] did not fully leverage the local 74 

(de)compressibility property of wavelets. Instead, their HFV1 approach retained some of the 75 

aforementioned adverse effects, by still relying on an extrinsic gradient sensor alongside its extra 76 

user-specified parameter and use of relatively fine initial meshes with very few resolution levels [26].  77 

More recently, adaptive multiwavelet-based schemes have been devised based on a 78 

multiresolution analysis implemented using multiwavelets (MW) within the local basis of DG 79 

methods [27-30]. Adaptive MWDG schemes have also been proposed for the solution of the SWE in 80 

the works of [28, 31, 32] , who have highlighted the ability of these approaches to:  81 

 Achieve resolution refinement and coarsening driven by a single user-prescribed parameter;  82 

 Rigorously transfer and recover data between disparate resolution levels, thereby allowing 83 

arbitrarily large resolution gaps and any degree of mesh coarsening; and,  84 

 Readily preserve accuracy, conservation and robustness properties of the underlying DG 85 

scheme.  86 

Starting with a robust DG2 hydrodynamic model, MW can be introduced subject to 87 

appropriate scaling of the DG2 local basis functions to form an MWDG2 scheme in which piecewise-88 



linear modelled data can be analysed, scaled and assembled into an adaptive solution. Compared to 89 

the HFV1 adaptive solver, which relies on piecewise-constant modelled data, MW allow greater 90 

compression rates. However, the strength of this property relating to standard FV1 and DG2 models 91 

is not yet identified from consistent MWDG2 and HFV1 schemes that fully exploit local 92 

(multi)wavelet compression of data. 93 

This paper studies the behaviour of (multi)wavelets integrated within robust FV1 and DG2 94 

solvers, and identifies the extent of their benefits and limitations for hydraulic modelling. In Sec. 2, a 95 

practical implementation of an MWDG2 solver is presented that fully exploits local MW compression 96 

of data, and in which an HFV1 solver is obtained by direct simplification from the MWDG2 97 

formulation (Sec. 2.4). Sec. 2 includes also the formulation of a scaled DG2 solver (Sec. 2.1) with 98 

guiding principles on how it readily fits into the multiresolution analysis of MW (Sec. 2.2) to form the 99 

so-called adaptive MWDG2 scheme (Sec. 2.3). In Sec. 3, the adaptive HFV1 and MWDG2 solvers are 100 

systematically tested and compared in the simulation of well-known hydraulic tests that cover 101 

elementary aspects relevant to accurate, efficient and robust hydraulic modelling. The adaptive 102 

solvers are run starting from an initial mesh with a single element spanning the entire domain, and 103 

the accuracy and efficiency of the adaptive solvers are quantified in relation to standard FV1 and 104 

DG2 simulations on the uniform grid involving the finest resolution accessible to the adaptive 105 

solvers. In Sec. 4, key findings and conclusions of this work are summarised. Numerical simulation 106 

data [33] and a Fortran 2003 implementation of the HFV1/MWDG2 shallow flow models [34] are 107 

available to download from Zenodo. Instructions for running the models and interpreting the data 108 

are provided in Appendix 1. 109 

 110 

 Adaptive MWDG2 scheme 111 

This section outlines the implementation details of an MWDG2 solver for the conservative form of 112 

the standard SWE with source terms over a 1D domain よ, written as: 113 項痛鍬 髪 項掴釧岫鍬岻 噺 繰岫鍬岻       Eq 1 114 



where 項痛 and 項掴 represent partial derivatives with respect to 建 and 捲, 鍬岫捲┸ 建岻 is the vector of the 115 

state variables at a location 捲 and time 建, 釧岫鍬岻 is the spatial flux vector and 繰岫鍬岻 is a vector 116 

including bed and friction slope terms. These vectors are given by: 117 

鍬 噺 釆月圏挽, 釧 噺 峪 圏槌鉄朕 髪 訣 朕鉄態 崋 and 繰 噺 釆 ど鯨長 髪 鯨捗挽   Eq 2 118 

where 訣 (m【s態) is gravity, 月 (m) is the water height, 圏 噺 月懸 (m態【s) is the flow discharge per unit 119 

width with 懸 (m【s) being the velocity, and 権岫捲岻 is the topography function in the bed slope source 120 

term 鯨長 噺 伐訣月 項掴権. The term 鯨捗 噺 伐系捗懸 】懸】 represents the energy loss due to friction effects with 121 系捗 噺 訣 券暢態 【月怠【戴 in which 券暢 ｷゲ デｴW M;ﾐﾐｷﾐｪげゲ HWS ヴﾗ┌ｪｴﾐWゲゲ IﾗWaaｷIｷWﾐデく 122 

 123 

2.1 Scaled DG2 formulation 124 

The 1D domain よ is divided into a set of 警 elements 岶荊沈岼沈退怠┸┼┸暢  by means of 警 髪 な interface points 125 岷捲沈貸怠【態峅沈退怠┸┼┸暢袋怠 such that 荊沈 噺 岷捲沈貸怠【態┸ 捲沈袋怠【態峅 is a segment with よ 噺 笈 荊沈暢沈退怠  and 荊沈窮荊沈袋怠 噺126 岶捲沈袋怠【態岼. An element 荊沈 has the centre 捲沈 噺 迭鉄岫捲沈袋怠【態 髪 捲沈貸怠【態岻 and size つ捲 噺 捲沈袋怠【態 伐 捲沈貸怠【態. 荊沈 can 127 

be mapped into a reference element 岷伐な┸ な峅 by the following change of variable 行岫捲岻 噺 に岫捲 伐128 捲沈岻【つ捲; therefore 行岫捲岻, such that 捲岫行岻 噺 捲沈 髪 行 つ捲【に, can be used to position 荊沈 onto 岷伐な┸ な峅. 129 

 130 

2.1.1 Finite element weak form 131 

By multiplying Eq. (1) by a test function 荒岫捲岻, integrating by parts to remove 項掴 on the flux term, and 132 

moving the flux terms to the RHS, the following weak form can be obtained [35]: 133 

完 項痛鍬岫捲┸ 建岻智  荒岫捲岻穴捲 噺 伐 峽範釧盤鍬岫捲┸ 建岻匪 荒岫捲岻飯擢智 伐 完 釧盤鍬岫捲┸ 建岻匪 項掴荒岫捲岻穴捲智 伐 完 繰岫鍬岫捲┸ 建岻岻智 荒岫捲岻穴捲峺 Eq 3 134 

It is worth noting that, in Eq. (3), the incorporation of appropriate local bases functions 135 

(orthonormal, compactly-supported and discontinuous) as choices for the test function 荒岫捲岻 and for 136 

expanding an approximate solution 鍬朕 噺 岷月朕   圏朕峅鐸 to 鍬 are key ingredients to designing an adaptive 137 

MWDG scheme [27, 29]. These choices are needed in order to: 138 



(i) Embed local resolution variability into the basis functions shaping the DG spatial 139 

operators via a dual basis;  140 

(ii) Expand a local DG approximate solution that is compatible with multi-scale 141 

decomposition offered by MW via a primal basis; and,  142 

(iii) Get the identity matrix as the only multiplier of the time derivative term 項痛鍬 in the LHS 143 

of Eq. (3) via deploying bi-orthonormal primal and dual bases. 144 

The key concepts relevant to these basis functions are introduced next as appropriate. 145 

 146 

2.1.2 Choice of bi-orthonormal bases 147 

The starting point is to consider the Legendre basis of polynomials up to first-order within the scope 148 

of designing a DG2 scheme [35]. This basis is denoted by 隈 噺 岷鶏待 鶏怠峅鐸  with 鶏待岫行岻 噺 な and 149 鶏怠岫行岻 噺 行. As such, it is compactly-supported on 岷伐な┸ な], inherently discontinuous at 行 噺 罰な, and 150 

orthogonal for the 詣態-norm defined by the following inner product: 151 極血┸ 訣玉 噺 完 血岫行岻訣岫行岻穴行智       Eq 4 152 

The basis 隈 is normalised for the 詣態-norm to produce the 詣態-orthonormal basis 隈撫  噺 範鶏侮待 鶏侮怠飯鐸
, such 153 

that 極鶏侮懲 ┸ 鶏侮懲嫦玉 噺 絞懲懲嫦 where 絞懲懲嫦 噺 な for 計 噺 計嫗 and 絞懲懲嫦 噺 ど otherwise. The components of the 154 

orthonormal basis 隈撫 are [36]: 155 

鶏侮懲岫行岻 噺 謬態懲袋怠態 鶏懲岫行岻  岫計 噺 ど┸な and 行 樺 岷伐な┸な峅岻  Eq 5 156 

From the orthonormal basis components 鶏侮待 and  鶏侮怠, the local primal and dual bases can be defined 157 

over 荊沈, which are denoted as 壮沈 噺 範砿沈待岫捲岻  砿沈怠岫捲岻飯鐸
 and 壮風 沈 噺 範砿葡沈待岫捲岻  砿葡沈怠岫捲岻飯鐸

 with: 158 砿沈懲岫捲岻 噺 ヂに 鶏侮懲岫行岫捲岻岻  岫計 噺 ど┸な and 捲 樺 荊沈岻   Eq 6 159 

砿葡沈懲岫捲岻 噺 釘日凪岫掴岻綻掴    岫計 噺 ど┸な and 捲 樺 荊沈岻   Eq 7 160 



Each of the primal and the dual bases is compactly-supported, orthogonal and discontinuous at the 161 

interfaces 捲沈罰怠【態 of the element 荊沈. These bases are bi-orthonormal since the following relationship 162 

holds: 163 極砿沈懲 ┸ 砿葡沈嫦懲嫦玉 噺 絞沈沈嫦絞懲懲嫦      Eq 8 164 

 165 

2.1.3 DG2 operators 166 

By choosing the test function 荒岫捲岻 as the components of the dual basis 砿葡沈懲岫捲岻 in Eq. (7) and 167 

exploiting their orthogonality and compact-support properties, the weak form in Eq. (3) becomes: 168 完 項痛鍬掴日甜迭【鉄掴日貼迭【鉄  砿葡 沈懲岫捲岻 穴捲 噺 靴沈懲岫鍬岻   岫計 噺 ど┸な岻  Eq 9 169 

where 靴沈懲岫鍬岻 are operators involving spatial evaluations of flux and source terms, given by: 170 

靴沈懲 噺 伐 犯範釧岫鍬岻 砿葡沈懲岫捲岻飯掴日貼迭【鉄掴日甜迭【鉄  伐 完 釧岫鍬岻 項掴砿葡沈懲岫捲岻穴捲掴日甜迭【鉄掴日貼迭【鉄 伐 完 繰岫鍬岻掴日甜迭【鉄掴日貼迭【鉄 砿葡沈懲岫捲岻穴捲般 Eq 10 171 

鍬 is replaced by an approximate solution 鍬朕 expressed in terms of the primal basis as: 172 鍬朕岫捲┸ 建岻】彫日 噺 デ 鍬沈懲岫建岻怠懲退待 砿沈懲岫捲岻 噺 鍬沈待岫建岻 髪 ヂぬ 行岫捲岻 鍬沈怠岫建岻    Eq 11 173 

in which 鍬沈待岫建岻 and 鍬沈怠岫建岻 are expansion coefficients, or modes, representing an average and a slope 174 

characterising the local linear approximation of 鍬朕 over 荊沈. The initial state of the coefficients at the 175 

RHS of Eq. (11), 鍬沈懲岫ど岻, is obtained by projecting a given initial condition 鍬待岫捲岻 噺 鍬岫捲┸ ど岻 onto the 176 

dual basis as follows: 177 鍬沈懲岫ど岻 噺 極鍬待┸ 砿葡沈懲玉 噺 完 鍬待岫捲岻 砿葡沈懲岫捲岻 穴捲捲件髪な【に捲件伐な【に    Eq 12 178 

which, once mapped into the reference element 岷伐な┸ な峅 for applying (計 + 1) GaussにLegendre 179 

quadrature rules and then manipulated to involve interface evaluations [37], yield the following 180 

expressions for initialising the initial average and slope coefficients: 181 鍬沈待岫ど岻 蛤 怠態 範鍬待盤捲沈袋怠【態匪 髪 鍬待盤捲沈貸怠【態匪飯    Eq 13 182 

鍬沈怠岫ど岻 蛤 怠態ヂ戴 範鍬待盤捲沈袋怠【態匪 伐 鍬待盤捲沈貸怠【態匪飯   Eq 14 183 



Now, considering Eqs. (9-10) with 鍬朕 instead of 鍬, and exploiting the bi-orthonormality property, via 184 

Eq. (8), the system of PDEs is locally decoupled to solve for two independent ODEs over 荊沈: 185 項痛鍬沈懲岫建岻 噺 靴沈懲岫鍬朕岻  岫計 噺 ど┸な岻   Eq 15 186 

The time derivative in Eq. (15) is solved using an explicit two-stage Runge-Kutta (RK2) time-stepping 187 

scheme (e.g. as described in [37]), which requires evaluation of the spatial DG2 operators 靴沈懲岫鍬朕岻 to 188 

evolve 鍬沈懲岫建岻 over 荊沈 over each RK2 stage. For simplicity, the local DG2 operators 靴沈懲岫鍬朕岻 is denoted 189 

hereafter by 靴沈懲, which can be expressed as: 190 靴沈懲 噺 伐 峽釧盤鍬朕岫捲沈袋怠【態┸ 建岻匪 砿葡沈懲盤捲沈袋怠【態匪 伐 釧盤鍬朕岫捲沈貸怠【態┸ 建岻匪 砿葡沈懲盤捲沈貸怠【態匪 伐191 

完 釧岫鍬酸岫捲┸ 建岻岻 項掴砿葡沈懲岫捲岻穴捲掴日甜迭【鉄掴日貼迭【鉄 伐 完 繰岫鍬朕岫捲┸ 建岻岻掴日甜迭【鉄掴日貼迭【鉄 砿葡沈懲岫捲岻穴捲峺  Eq 16 192 

Adopting discontinuous basis functions allows 鍬朕 to be discontinuous at the element interfaces 193 捲沈罰怠【態. To incorporate both limits, 鍬朕貸岫捲沈罰怠【態┸ 建岻 and 鍬朕袋岫捲沈罰怠【態┸ 建岻 in the flux evaluation therein, a 194 

numerical flux function 釧楓 岫ゲ┸ゲ岻 is introduced as is usually done in Godunov-type finite volume 195 

methods [1, 38]. By further mapping 靴沈懲 onto the reference element where 岫計 髪  な岻 Gaussに196 

Legendre quadrature rules can be applied to approximate volume integral terms of the flux and 197 

source terms, and by considering only the bed slope source term 繰長 噺 岷ど  鯨長峅鐸, Eq. (16) becomes: 198 靴沈待 噺 伐 怠綻掴 峽釧楓沈袋怠【態  伐  釧楓沈貸怠【態 伐 つ捲 繰長岫鍬沈待┸ 項掴権朕岻峺   Eq 17 199 

靴沈怠 噺 伐 ヂ戴綻掴 班釧楓沈袋怠【態 髪  釧楓沈貸怠【態 伐 範釧盤鍬沈待 髪 鍬沈怠匪 髪 釧盤鍬沈待 伐 鍬沈怠匪飯伐 綻掴態ヂ戴 範繰長盤鍬沈待 髪 鍬沈怠┸ 項掴権朕匪 伐 繰長盤鍬沈待 伐 鍬沈怠┸ 項掴権朕匪飯藩  Eq 18 200 

In Eq. (18), 釧楓沈袋怠【態 噺 釧楓 岫鍬沈袋怠【態貸 ┸ 鍬沈袋怠【態袋 岻 represents a flux evaluation at 捲沈袋怠【態 via a two-argument 201 

numerical flux function 釧楓 based on the Harten, Lax and van Leer approximate Riemann solver [38]. 202 鍬沈袋怠【態貸 噺 鍬朕岫捲沈袋怠【態┸ 建岻】彫日  and 鍬沈袋怠【態袋 噺 鍬朕岫捲沈袋怠【態┸ 建岻】彫日甜迭  denote the limits of 鍬酸 at both sides from 203 捲沈袋怠【態, which are known as Riemann states, at which wetting and drying considerations occur (as 204 

outlined later in Sec. 2.3.3). These limits can obtained from Eq. (11) as follows:  205 鍬沈袋怠【態貸 噺 鍬沈待岫建岻 髪 ヂぬ 鍬沈怠岫建岻   and  鍬沈袋怠【態袋 噺 鍬沈袋怠待 岫建岻 伐 ヂぬ 鍬沈袋怠怠 岫建岻 Eq 19 206 



The bed slope discretisation in 繰長 is performed by expanding 権朕 locally over 荊沈 onto the primal basis, 207 

consistently with the shaping of the local approximate solution (Eqs.11-14):  208 権朕岫捲岻】彫日 噺 権沈待 髪 ヂぬ 行岫捲岻 権沈怠       Eq 20 209 

with 権沈待 and 権沈怠 being time-independent modes for the topography term approximation, which can 210 

be initialised as in Eqs. (13-14), by: 211 権沈待 蛤 怠態 範権盤捲沈袋怠【態匪 髪 権盤捲沈貸怠【態匪飯     Eq 21 212 

権沈怠 蛤 怠態ヂ戴 範権盤捲沈袋怠【態匪 伐 権盤捲沈貸怠【態匪飯    Eq 22 213 

The discretisation is then completed by extracting an approximate partial derivative while mapping 214 

from the reference element: 215 

項掴権朕】彫日 噺 態ヂ戴綻掴  権沈怠      Eq 23 216 

Therefore, the expressions of the bed slope source terms involved in Eqs. (17) and (18) become: 217 

繰長岫鍬朕岫捲┸ 建岻┸ 項掴権朕岻 噺 態ヂ戴ッ掴日 釆 ど伐訣 月朕岫捲┸ 建岻 権沈怠挽    Eq 24 218 

Substituting Eq. (24) into Eqs. (17) and (18), the DG2 operators can be further simplified to: 219 

靴沈待 噺 伐 怠綻掴 犯釧楓沈袋怠【態  伐  釧楓沈貸怠【態  髪 釆 どに訣ヂぬ月沈待 権沈怠挽般     Eq 25 220 

靴沈怠 噺 伐 ヂ戴綻掴 犯釧楓沈袋怠【態 髪  釧楓沈貸怠【態  伐 釧盤鍬沈待 髪 鍬沈怠匪 伐 釧盤鍬沈待 伐 鍬沈怠匪 髪 釆 どに訣月沈怠権沈怠挽般  Eq 26 221 

 222 

2.1.4 Extension to multiresolution bases 223 

From the same 詣2-orthonormal basis 隈撫, a series of child bases 岶隈撫岫津岻岼津  can be defined given its 224 

property of being a refinable function [36, 39, 40] に where 券 is a positive integer indicating the 225 

refinement level, which will hereafter be used as a bracketed superscript to avoid notation confusion 226 

with other indexes. These child bases arise from the father basis 隈撫岫待岻 噺 隈撫 and preserve its 227 

properties. The supports of these child bases at any refinement level 岫券岻 can be associated with a 228 

grid 訣岫津岻 based on 券 dyadic sub-divisions of the support 岷伐な┸な峅 of 隈撫. Hence, 訣岫津岻 spans 岷伐な┸な峅 such 229 



that 訣岫津岻  噺 笈 荊珍岫津岻態韮貸怠珍退待 , where  岶荊珍岫津岻岼珍退待┸怠┸┼┸態韮貸怠 is a set of non-overlapping sub-divisions of 岷伐な┸な峅. 230 

Moreover, a sub-division 荊珍岫津岻
 can be regarded as a sub-element of 岷伐な┸な峅, taking the following form: 231 

荊珍岫津岻 噺 範鋼珍貸怠【態┸ 鋼珍袋怠【態飯     Eq 27 232 

with 鋼珍貸怠【態 噺 伐な 髪 鉄鉄韮 倹 are interface points forming sub-elements 岶荊珍岫津岻岼珍退待┸怠┸┼┸態韮貸怠, and the index 233 

倹 噺 ど┸な┸ ┼ ┸ に津 伐 な representing the position of 荊珍岫津岻
 in 訣岫津岻, on which the components 隈撫珍岫津岻

 of the 234 

basis 隈撫岫津岻 噺 岷隈撫珍岫津岻峅珍  can be obtained by translation and dilatation of 隈撫, as follows: 235 

隈撫珍岫津岻岫鋼岻 噺 盤ヂに匪津 隈撫岫に津岫鋼 髪 な岻 伐 に倹 伐 な岻 岾鋼 樺 荊珍岫津岻峇  Eq 28 236 

From the compact-support and 詣2-orthonormality properties of 岶隈撫岫津岻岼津, the grids 岶訣岫津岻岼津  form a 237 

hierarchy spanning 岷伐な┸な峅, i.e. 笈 訣岫津岻津 噺 岷伐な┸な峅, and are globally nested across all refinement 238 

levels while having local and non-overlapping support at each level 岫券岻. 239 

 Similarly, on a mesh element 荊沈 噺 岷捲沈貸怠【態┸ 捲沈袋怠【態峅 a hierarchy of nested grids  岶訣沈岫津岻岼津 can be 240 

defined such that 訣沈岫津岻 噺 笈 荊珍┸沈岫津岻態韮貸怠珍退待  with  岶荊珍┸沈岫津岻岼珍退待┸怠┸┼┸態韮貸怠 now denoting sub-divisions of 荊沈, with 241 

荊珍┸沈岫津岻
 representing a sub-element of 荊沈 at a position 倹 relative to refinement level 岫券岻, namely: 242 

荊珍┸沈岫津岻 噺 峙捲珍貸怠【態┸沈岫津岻  ┸ 捲珍袋怠【態┸沈岫津岻 峩    Eq 29 243 

In Eq. (29), 捲珍貸怠【態┸沈岫津岻 噺 捲沈貸怠【態 髪 ッ捲岫津岻倹 are interface points forming sub-elements 岶荊珍┸沈岫津岻岼珍退待┸怠┸┼┸態韮貸怠 244 

and ッ捲岫津岻 噺 ッ捲【に津 is the grid spacing relative to grid 訣沈岫津岻
 with positions 倹 such that  倹 噺245 ど┸な┸ ┼ ┸ に津 伐 な. For convenience of presentation, sub-elements 荊珍┸沈岫津岻

 will hereafter be denoted by 荊勅岫津岻
 246 

where index さ結ざ is shorthand for さ倹┸ 件ざ デﾗ ヮﾗゲｷデｷﾗﾐ sub-elements in 荊沈. Thereby, sub-elements 荊勅岫津岻
 can 247 

be linked to 荊珍岫津岻
 by translation into 岷伐な┸な峅. This also makes it easy to keep consistent with the 248 

notation associated with the DG2 method presented previously (Secs. 2.1.1-2.1.3) for application at 249 

sub-elements 荊勅岫津岻
, which take the following form: 250 荊勅岫津岻 噺 峙捲勅貸怠【態岫津岻 ┸ 捲勅袋怠【態岫津岻 峩     Eq 30 251 



with 捲勅岫津岻
 and ッ捲勅岫津岻

 being the centre position and the size of a sub-element 荊勅岫津岻
, respectively. On 252 荊勅岫津岻 樺 訣沈岫津岻

 bi-orthonormal dual and primal bases, denoted by 壮勅  and 壮風 勅 , can be defined via the 253 

refined bases 岷隈撫珍岫津岻峅珍 by analogy (recall Eqs. 6-7), and take the form: 254 

壮勅岫津岻岫捲岻 噺 ヂに 隈撫珍岫津岻岫鋼岻  岾捲 樺 荊勅岫津岻 汽 荊沈峇   Eq 31 255 

壮風 勅岫津岻岫捲岻 噺 壮賑岫韮岻岫掴岻綻掴岫韮岻   岾捲 樺 荊勅岫津岻 汽 荊沈峇   Eq 32 256 

where 鋼岫捲岻 噺 に岫捲 伐 捲勅岫津岻岻【ッ捲勅岫津岻
 is a change of variable used to map the position 捲 樺 荊勅岫津岻

 into 荊珍岫津岻 . 257 

Adopting the local basis functions in Eqs. (31-32), and reworking the steps in Sec. 1.1.3, yield similar 258 

DG2 operators for any sub-element 荊勅岫津岻 樺 訣沈岫津岻
, which are similar to Eqs. (25-26) but with index 結 259 

instead of 件 and the grid spacing つ捲岫津岻 of 訣沈岫津岻
 instead of つ捲. Such DG2 operators can be applied to 260 

evolve DG2 modes 鍬勅待岫建岻 and 鍬勅怠岫建岻, spanning local flow solutions 鍬朕岫捲┸ 建岻】彫賑岫韮岻  over any sub-261 

element 荊勅岫津岻 樺 岶訣沈岫津岻岼津, starting from initial flow modes as described in Eqs. (13-14) with index 結 262 

instead of 件. Similarly, topography modes, 権勅待 and 権勅怠 on 荊勅岫津岻
, can be initialised as in Eqs. (21-22) for 263 

use in the DG2 operators on 荊勅岫津岻
.  264 

To ease the presentation in the following sections, DG2 flow and topography modes (鍬勅待岫建岻, 265 鍬勅怠岫建岻, 権勅待 and 権勅怠) will be considered component-wise, and the scalar variable 憲 樺 岶月┸ 圏┸ 権岼 will be 266 

used to represent any physical quantities in 鍬 噺 岷月  圏峅鐸 and 権. Since each 憲 has DG2 modes, which 267 

are actually its spectral components in terms of average and slope coefficients, DG2 modes of any 268 

physical quantity 憲 on sub-elements 荊勅岫津岻 樺 岶訣沈岫津岻岼津 will be denoted as 四勅岫津岻 噺 岷憲勅待┸岫津岻  憲勅怠┸岫津岻峅.  269 

 270 

2.2 Multiresolution analysis 271 

From the same 詣2-orthonormal basis 隈撫, child bases 岶隈撫岫津岻岼津 and multiwavelet bases 岶全岫津岻岼津 can be 272 

defined. This allows multiresolution analysis to be performed, which is summarised in this section 273 

with a view to presenting how it is directly applicable to analysing the behaviour of the DG2 modes 274 

on multiresolution bases. 275 



 276 

2.2.1 Relationship between the scaling bases 岶隈撫岫津岻岼津 277 

From the properties of the scaling bases 岶隈撫岫津岻岼津 defined on the hierarchy of grids  岶訣岫津岻岼津, it is 278 

possible to produce a recurrence relationship for binary merging of two adjacent components of the 279 

bases belonging to 訣岫津袋怠岻 to form the components of the bases in 訣岫津岻. Without loss of generality, it 280 

suffices to outline the relationship linking an elementary father basis 岷隈撫珍岫津岻峅 and its child bases 281 

岷隈撫態珍岫津袋怠岻 隈撫態珍袋怠岫津袋怠岻峅, in particular for the case between 訣岫待岻and 訣岫怠岻 where 券 噺  倹 噺 ど. This relationship 282 

between the scaling bases can be achieved by involving the so-called low-pass filter matrices 屈待 and 283 屈怠 [36, 40], which allow 隈撫珍岫津岻
 to be expressed as linear combination of 隈撫態珍岫津袋怠岻

 and 隈撫態珍袋怠岫津袋怠岻
: 284 

隈撫珍岫津岻 噺 屈待 隈撫態珍岫津袋怠岻 髪 屈怠 隈撫態珍袋怠岫津袋怠岻
     Eq 33 285 

屈待 噺 峙極隈撫珍岫津岻┸ 隈撫態珍岫津袋怠岻玉峩 噺 峪 な【ヂに ど伐ヂは【ね ヂに【ね崋    Eq 34 286 

屈怠 噺 峙極隈撫珍岫津岻┸ 隈撫態珍袋怠岫津袋怠岻玉峩 噺 峪な【ヂに どヂは【ね ヂに【ね崋    Eq 35 287 

 288 

2.2.2 Multiwavelet bases and their relationship to the scaling bases 289 

Now reconsidering the father basis 隈撫, a mother basis of wavelets 全, or multiwavelets [36], can be 290 

defined on 訣岫待岻 噺 岷伐な┸な峅, which represents the encoded (詣2-orthonormal) difference between 隈撫 噺291 隈撫待岫待岻
 and the components of its two child bases 岷隈撫待岫怠岻 隈撫怠岫怠岻峅 supported on 訣岫怠岻 噺 岷伐な┸ど峅笈 岷ど┸な峅. In 292 

essence, 全 represents the (詣2-orthonormal) complement of 隈撫待岫待岻 噺 隈撫 in 訣岫怠岻. Therefore, 全 is one 293 

refinement level higher than 隈撫待岫待岻
 and spans 訣岫待岻 堪 訣岫怠岻, taking the form [36]: 294 全岫鋼岻 噺 岷閤待岫待岻岫鋼岻 閤怠岫待岻岫鋼岻峅        Eq 36 295 

閤待岫待岻岫鋼岻 噺 菌芹
緊伐謬戴態 岫に鋼 髪 な岻      鋼 樺 荊待岫怠岻

髪謬戴態 岫に鋼 伐 な岻       鋼 樺 荊怠岫怠岻   and 閤怠岫待岻岫鋼岻 噺 菌芹
緊謬怠態 岫ぬ鋼 髪 に岻       鋼 樺 荊待岫怠岻

謬怠態 岫ぬ鋼 伐 に岻        鋼 樺 荊怠岫怠岻 Eq 37 296 



with 荊待岫怠岻 噺 岷伐な┸ど峅 and 荊怠岫怠岻 噺 岷ど┸な峅 denoting the two shifts forming 訣岫怠岻, for generality relating to 297 

Eq. (27). Note that 全 admits a discontinuity at 鋼 噺 ど, which offers an advantage for the analysis of 298 

signals with discontinuities. Moreover, 全 and 隈撫 are bi-orthonormal with the former inheriting the 299 

properties of the latter. Hence, a series of child multiwavelets 岶全岫津岻岼津 can be defined on the 300 

hierarchy of grids  岶訣岫津岻岼津 by translation and dilatation of 全, such that on a grid 訣岫津岻  噺 笈 荊珍岫津岻態韮貸怠珍退待 , 301 

全岫津岻 噺 岷全珍岫津岻峅珍退待┸怠┸┼┸態韮貸怠   where each 全珍岫津岻 takes the following form:  302 

全珍岫津岻岫鋼岻 噺 盤ヂに匪津 全岫に津岫鋼 髪 な岻 伐 に倹 伐 な岻 岾鋼 樺 荊珍岫津岻峇   Eq 38 303 

From the scaling bases, binary merging of two adjacent components belonging to 訣岫津袋怠岻 can be 304 

achieved to produce the components of the multiwavelet bases in 訣岫津岻. Again, it suffices to outline 305 

the relationship linking an elementary multiwavelet basis 岷全珍岫津岻峅 in 訣岫津岻 to the scaling bases 306 

岷隈撫態珍岫津袋怠岻 隈撫態珍袋怠岫津袋怠岻峅 in 訣岫津袋怠岻 for 券 噺  倹 噺 ど. This relationship can be expressed by using the so-called 307 

high-pass filter matrices 屑待 and 屑怠, which allow 全珍岫津岻
 to be derived as linear combination of 隈撫態珍岫津袋怠岻

 308 

and 隈撫態珍袋怠岫津袋怠岻
:  309 

全珍岫津岻 噺 屑待 隈撫態珍岫津袋怠岻 髪 屑怠 隈撫態珍袋怠岫津袋怠岻
      Eq 39 310 

屑待 噺 峙極全珍岫津岻┸ 隈撫態珍岫津袋怠岻玉峩 噺 峪 ど 伐な【ヂにヂに【ね ヂは【ね 崋      Eq 40 311 

屑怠 噺 峙極全珍岫津岻┸ 隈撫態珍袋怠岫津袋怠岻玉峩 噺 峪 ど な【ヂに伐ヂに【ね ヂは【ね崋     Eq 41 312 

 313 

2.2.3 Single-scale vs. multi-scale expansions 314 

The definition of scaling and multiwavelet bases on the hierarchy of grids 岶訣岫津岻岼津 allows for two 315 

interchangeable ways to approximate a given scalar signal 嫌岫行岻 defined on 岷伐な┸な峅. Given a grid 316 訣岫津岻  噺 笈 荊珍岫津岻態韮貸怠珍退待  associated with the scaling bases 隈撫岫津岻 噺 岷隈撫珍岫津岻峅珍退待┸怠┸┼┸態韮貸怠 , an approximation 317 嫌朕岫行岻 of the signal 嫌岫行岻 can be obtained by expanding it onto the bases 隈撫岫津岻 as follows [36]:  318 



嫌朕岫行岻 噺 デ  嫌朕岫鋼岻】彫乳岫韮岻態韮貸怠珍退待      Eq 42 319 

in which 嫌朕岫鋼岻】彫乳岫韮岻  is a piecewise-linear expansions onto each basis 隈撫珍岫津岻
 that is compactly-supported 320 

on the sub-element 荊珍岫津岻
. The signal approximation can therefore be expressed as: 321 

嫌朕】彫乳岫韮岻 噺 極史倹岫券岻┸ 隈撫珍岫津岻玉 噺 嫌倹ど┸岫券岻 鶏侮珍待┸岫津岻 髪 嫌倹な┸岫券岻 鶏侮珍怠┸岫津岻
  Eq 43 322 

where 史珍岫津岻 噺 岷嫌珍待┸岫津岻 嫌珍怠┸岫津岻峅 denotes local scale coefficients expanding 嫌朕岫鋼岻】彫乳岫韮岻  onto the basis 隈撫珍岫津岻
, 323 

which can be initialised as 嫌珍懲┸岫津岻 噺 極嫌┸ 鶏侮珍懲┸岫津岻玉 with 計 噺  ど┸な. This type of description, i.e. in Eqs. (42) 324 

and (43), is called single-scale expansion as it only involves scale coefficicents from the grid 訣岫津岻, at a 325 

single-scale refinement level 岫券岻.  326 

 Another way to expand 嫌朕岫行岻 is to involve the multiwavelet bases. By doing so, the single-327 

scale description of in Eqs. (42-43) can be recursively decomposed to produce a so-called multi-scale 328 

expansion. This form of description sums up the features of 嫌朕岫行岻, via wavelet coefficients, 329 

throughout grids 訣岫待岻┸ ┼ ┸ 訣岫津貸怠岻 to its background information at its coarsest level (i.e. the scale 330 

coefficients on 訣岫待岻). Hence, the multi-scale expansion takes the form [36]: 331 嫌朕岫行岻 噺 嫌朕岫行岻】彫轍岫轍岻 髪 デ 岾デ  極纂倹岫健岻岫鋼岻┸ 僧珍岫鎮岻岫鋼岻玉態如貸怠珍退待 峇津貸怠鎮退待    Eq 44 332 

極纂珍岫鎮岻┸ 僧倹岫健岻玉 噺 穴珍待┸岫津岻 閤倹ど┸岫健岻 髪 穴珍怠┸岫津岻 閤倹な┸岫健岻    Eq 45 333 

with 纂珍岫鎮岻 噺 岷穴珍待┸岫鎮岻 穴珍怠┸岫鎮岻峅 denoting the local details also known as detail coefficients or wavelet 334 

coefficients. They can be initialised as 穴珍懲┸岫鎮岻 噺 極嫌┸ 閤珍懲┸岫鎮岻玉 with 計 噺  ど┸な. The multi-scale expansion in 335 

Eqs. (44-45) clearly distinguishes the details of 嫌朕岫行岻 between successively higher resolution, which 336 

become increasingly significant with increasing levels of non-smoothness in 嫌朕岫行岻 while remaining 337 

negligible where 嫌朕岫行岻 is smooth. Therefore, it provides a mechanism to analyse, decompose and 338 

reconstruct the approximate signal 嫌朕岫行岻 across the grids in the hierarchy 岶訣岫津岻岼津.  339 

 340 

2.2.4 Two-scale transformations between coefficients 341 



From the link between the high- and low-pass filter matrices [36] outlined previously in Eqs. (34-35) 342 

and (40-41), relationships for scaling up or down (recurrently) relevant coefficients between 343 

subsequent resolution levels 岫券岻 and 岫券 髪 な岻 can be produced, namely: 344 

班史珍岫津岻 噺 屈待 史態珍岫津袋怠岻 髪 屈怠 史態珍袋怠岫津袋怠岻纂珍岫津岻 噺 屑待 慧態珍岫津袋怠岻 髪 屑怠 慧態珍袋怠岫津袋怠岻    Eq 46 345 

班史態珍岫津袋怠岻 噺 岷屈待峅鐸 慧珍岫津岻 髪 岷屑待峅鐸 纂珍岫津岻    史態珍袋怠岫津袋怠岻 噺 岷屈怠峅鐸 史珍岫津岻 髪 岷屑怠峅鐸 纂珍岫津岻       Eq 47 346 

Eq. (46) is useful to encode (or extract) the scale and detail coefficients 史珍岫津岻
 and 纂珍岫津岻

 at a sub-347 

element 荊珍岫津岻 樺 訣岫津岻 from the scale coefficients 史態珍岫津袋怠岻
 and 史態珍袋怠岫津袋怠岻

 of its two child sub-elements 348 

岶荊態珍岫津袋怠岻┸ 荊態珍袋怠岫津袋怠岻岼 樺 訣岫津袋怠岻. It applies in a descending order across refinement levels starting from sub-349 

elements on the finest grid 訣岫挑岻 with 岫詣岻 being a maximum refinement level prescribed by a user. 350 

This results in a multi-scale expansion, as in Eq. (44), compressing the details across the whole 351 

hierarchy 岶訣岫津岻岼津退待┸怠┸┼┸挑. Eq. (47) is used in the opposite sense to decode (or combine) scale and 352 

wavelet coefficients at any 荊珍岫津岻
 (券 噺 詣 伐 な┸ ┼ ┸な┸ど) to generate their scale coefficients located one 353 

resolution higher, i.e. the scale coefficients on the two sub-elements 荊態珍岫津袋怠岻
 and 荊態珍袋怠岫津袋怠岻

. Given a 354 

multi-scale expansion, Eq. (47) can successively be applied in an ascending order, starting from the 355 

information available at the coarsest grid 訣岫待岻, to retrieve a single-scale expansion, as in Eq. (42), up 356 

to any refinement level 岫券岻, ど 判 券 判 詣. 357 

 358 

2.2.5 Extension of the analysis for the DG2 modes on multiresolution bases  359 

To extend the validlity of the analysis in Secs. 2.2.1-2.2.4 from bases 岶隈撫岫津岻岼津, spanning 岷伐な┸な峅, to the 360 

multiresolution bases 岶壮勅岫津岻岼津, spanning 荊沈, it suffices to consider Eq. (31) and the notation adopted 361 

in Sec. 2.1.4. Now, Eqs. (42-45) can be reused for any physical component 憲, with 憲朕】彫日 being its 362 

expansion on 荊沈 by coefficients 岷四勅岫津岻峅津┸勅, as in Eq. (42). Each 四勅岫津岻
 contains the expansion coefficients 363 



of a local linear DG2 solution on sub-elements 荊勅岫津岻 汽 荊沈, as in Eq. (43), or DG2 modes as 四勅岫津岻 噺364 岷憲勅待┸岫津岻  憲勅怠┸岫津岻峅. 365 

Over a selected grid 訣沈岫津岻 噺 笈 荊勅岫津岻態韮貸怠勅退待  of the hierarchy of grids 岶訣沈岫津岻岼津, DG2 modes 366 岷四勅岫津岻峅勅退待┸怠┸┼┸態韮貸怠 can be initialised for the single-scale expansion 憲朕】彫日, which actually represents an 367 

assembled DG2 solution on grid 訣沈岫津岻
. Alternatively, a multi-scale expansion is also possible as in Eqs. 368 

(44-45), which is actually a compressed MWDG2 solution allowing to access the details 岷纂勅岫鎮岻峅鎮┸勅 , with 369 纂勅岫鎮岻 噺 岷穴勅待┸岫鎮岻  穴勅怠┸岫鎮岻峅, living on lower resolution grids 岶訣沈岫鎮岻岼鎮退津貸怠┸┼┸怠┸待. These details can be initialised 370 

from the DG2 modes on 訣沈岫津岻
 for the physical components 憲 樺 岶月 髪 権┸ 圏┸ 権岼 as explained later in Sec. 371 

2.3.1. With this change of bases and variable, the two-scale transformation formulae in Eqs. (46-47) 372 

should be re-scaled by ヂに to make them relevant to the DG2 modes and their associated details, 373 

leading to modified formulae: 374 

崔四勅岫津岻 噺 怠ヂ態 岾屈待 四態勅岫津袋怠岻 髪 屈怠 四態勅袋怠岫津袋怠岻峇纂勅岫津岻 噺 怠ヂ態 岾屑待 四態勅岫津袋怠岻 髪 屑怠 四態勅袋怠岫津袋怠岻峇     Eq 48 375 

崔四態勅岫津袋怠岻 噺 ヂに 岾岷屈待峅鐸 四勅岫津岻 髪 岷屑待峅鐸 纂勅岫津岻峇    四態勅袋怠岫津袋怠岻 噺 ヂに 岾岷屈怠峅鐸 四勅岫津岻 髪 岷屑怠峅鐸 纂勅岫津岻峇     Eq 49 376 

As detailed later in Sec. 2.3, Eqs. (48-49) can be directly deployed within the scaled DG2 method, as 377 

needed, to encode information via Eq. (48), i.e. binary merging of DG2 modes on 訣沈岫津袋怠岻
 to generate 378 

coarser modes and/or their details on 訣沈岫津岻
, or decode information via Eq. (49), i.e. adding up the 379 

details and modes on 訣沈岫津岻
 to generate the DG2 modes on 訣沈岫津袋怠岻

. Encoding is key to produce, scan 380 

and distinguish the details across successive refinement levels from within the compressed MWDG2 381 

solution, whereas decoding is key to generate an assembled DG2 solution from a set of carefully-382 

selected DG2 modes relative to sub-elements with non-uniform size つ捲岫津岻.  383 

 384 

2.3 Multiresolution scaled DG2 adaptive solution 385 



This section describes how multiresolution analysis (Sec. 2.2) can be used directly within the scaled 386 

DG2 formulation (Sec. 2.1) to produce the so-called adaptive MWDG2 numerical solution. The 387 

starting point is to set a desired maximum refinement level 岫詣岻 and thereby refine the coarsest 388 

discretisation of the domain よ 噺 笈 荊沈暢沈退怠  to be at the finest uniform resolution allowable (a uniform 389 

mesh with に挑警 sub-elements). Now, each element 荊沈  has に挑 sub-elements 岶荊勅岫挑岻岼勅退待┸怠┸┼┸態薙貸怠 such 390 

that 荊沈 噺 訣沈岫挑岻 噺 笈 荊勅岫挑岻態薙貸怠勅退怠 . Given that the combined MWDG2 functioning can be applied element-391 

wise, we hereafter assume that the coarsest grid spanning よ is made by a single element, hence we 392 

take 警 噺  な without loss of generality. Now 訣沈岫挑岻
 represents the finest uniform discretisation for よ, 393 

which is made of sub-elements 岶荊勅岫挑岻岼勅退待┸怠┸┼┸態薙貸怠. On each sub-element 荊勅岫挑岻
, DG2 modes, 四勅岫挑岻 噺394 

岷憲勅待┸岫挑岻  憲勅怠┸岫挑岻峅 with 憲 樺 岶月┸ 圏┸ 権岼 can be initialised in terms of flow and topography data (Sec. 2.1.4), 395 

forming an assembled DG2 solution on the finest grid 訣沈岫挑岻
 for initial pre-processing (Sec. 2.3.1). 396 

 397 

2.3.1 Pre-processing: generation of initial detail coefficients (建 = 0 s) 398 

Initially, DG2 modes 岷四勅岫挑岻峅勅退待┸怠┸┼┸態薙貸怠  of the flow and topography are only available on 訣沈岫挑岻
. From 399 

these modes, details 岷纂勅岫津岻峅津┸勅 living on the lower resolution grids 岶訣沈岫津岻岼津退挑貸怠┸┼┸怠┸待 can be encoded. 400 

This is achieved by successive application of Eq. (48) in a descending order, starting from refinement 401 

level (詣 伐 な岻 until reaching the coarsest level 岫ど岻 where both the coarsest modes 四待岫待岻
 and details 402 纂待岫待岻

 become available. Moreover, details representing the water height 月 were encoded based on 403 

the DG2 modes representing the free-surface elevation 月 髪 権, which was found necessary to avoid 404 

producing misinformative details for 月 when the topography is very steep. In what follows, the 405 

details 岷纂勅岫津岻峅津┸勅 will be actually associated with components 憲 樺 岶月 髪 権┸ 圏┸ 権岼. 406 

From the details 岷纂勅岫津岻峅津┸勅, an alternative set of normalised detail magnitudes, denoted by 407 岷穴寢勅岫津岻峅津┸勅, can be generated. This set is needed to enable measuring the significance of all detail 408 



coefficents combined, regardless of which physical quantity 憲 they represent. Namely, a normalised 409 

detail magnitude 穴寢勅岫津岻
 is a scalar evaluated from from its detail 纂勅岫津岻

 as [29]: 410 

穴寢勅岫津岻 噺 陳銚掴岾嵳鳥賑轍┸岫韮岻嵳┸嵳鳥賑迭┸岫韮岻嵳峇陳銚掴岫怠┸】陳銚掴 岫岷通賑轍┸岫薙岻峅賑岻】岻      Eq 50 411 

where 兼欠捲 岫岷憲勅待┸岫挑岻峅勅岻 is the maximum of the average coefficients of the DG2 modes on 訣沈岫挑岻
 に also 412 

across the hierarchy 岶訣沈岫津岻岼津退挑┸┼┸怠┸待 due to variational boundness across refinement levels. 413 

Note that, at the starting time, all details 岷纂勅岫津岻峅津┸勅 for all variables 憲 樺 岶月 髪 権┸ 圏┸ 権岼 are fully 414 

accessible on 岶訣沈岫津岻岼津退挑貸怠┸┼┸怠┸待. They can be ascendingly summed upon the coarsest DG2 modes, 415 四待岫待岻
, on 荊沈 to form a compressed MWDG2 solution on 岶訣沈岫津岻岼津退挑┸┼┸怠┸待, which is as accurate as the 416 

assembled DG2 solution on 訣沈岫挑岻
. Later, when 建 > 0, details 岷纂勅岫津岻峅津┸勅 of the flow variables 憲 樺 岶月 髪417 権┸ 圏岼 are subjected to constant change given the time-dependent nature of 月 髪 権 and 圏 (Sec. 2.3.4), 418 

while the details of 権 do not change with time. 419 

 420 

2.3.2 Prediction, regularisation and decoding: adaptive solution generation (建 д ヰ ゲ) 421 

By analysing the magnitude of the normalised details in the hierarchy 岶訣沈岫津岻岼津退挑┸┼┸怠┸待, an adaptive 422 

grid at a present time 建, denoted by 訣沈凋岫建岻, can be formed by selecting certain sub-elements: 423 訣沈凋岫建岻 汽 峽荊勅岫津岻 樺 岶訣沈岫津岻岼津┸ ど 判 券 判 詣 ┸ ど 判 結 判 に挑 伐 な and よ 噺 笈 荊勅岫津岻津┸勅 峺  Eq 51 424 

The act of measuring normalised detail magnitudes is here refered to as prediction and involves four 425 

subsequent steps for deciding the sub-elements forming 訣沈凋岫建岻.  426 

Firstly, an error threshold 綱 needs to be prescribed such that ど 隼 綱 隼 な, which is a 427 

parameter chosen by the user to decide which details can be ignored. While there is no unique 428 

choice for 綱, an optimal range of choices exists to keep the accuracy of assembled DG2 solution on 429 訣沈凋岫建岻 at the same level as the finest resolution accessible on 訣沈岫挑岻
 at time 建 に via the compressed 430 

MWDG2 solution [27]. An optimal choice for 綱 is expected to be somewhere between など貸替 and 431 など貸態. Arguably, the choice of 綱 is rather heuristic, context-specific and seemigly dependent on the 432 



order-of-accuracy of the DG scheme [20, 21, 29]. An analysis on the choice of 綱 for the adaptive 433 

HFV1 and MWDG2 solvers used in the present work is carried out later in Sec. 3.1.1. 434 

Secondly, normalised details 岷穴寢勅岫津岻峅津┸勅 living on 岶訣沈岫津岻岼津退挑貸怠┸┼┸怠┸待 are compared to 綱 for 435 

indentifying the significant details. In doing so, their magnitudes are scanned, level-wise (in an 436 

ascending order 券 噺 ど┸な┸ ┼ ┸ 詣 伐 な), and compared to level-depedent error thresholds 綱岫津岻 such that 437 綱岫津岻 噺 に津貸挑綱. Within this process, a detail 纂勅岫津岻
 is classified as significant if: 438 穴寢勅岫津岻 伴 綱岫津岻     Eq 52 439 

Meanwhile, sub-elements 荊勅岫津岻
 with significant details are flagged as active, meaning they are 440 

plausible candidates for inclusion in 訣沈凋岫建岻. 441 

Thirdly, re-flagging of active sub-elements 荊勅岫津岻
 is needed for regularisation, to ensure that 442 

significant details can be re-accessed within a tree structure. In fact, across 訣沈岫挑貸怠岻┸ ┼ ┸ 訣沈岫怠岻
 and 訣沈岫待岻

, 443 

whenever any child details 纂態勅岫津岻
 or 纂態勅袋怠岫津岻

 is significant on 訣沈岫津岻
 its parent detail 纂勅岫津貸怠岻

 on 訣沈岫津貸怠岻
 can 444 

only be significant and should be made accessible for possible use に later in the generation of an 445 

assembled DG2 solution on 訣沈凋岫建岻. Thus, regularisation is the act of ensuring that such sub-elements 446 荊勅岫津貸怠岻
 are also flagged as active. When many mother elements are used (警 > 1), regularisation 447 

should also consider activating those sub-elements located at the boundaries across the elements, 448 

which is necessary to ensure that the modelling information can propagate across different 449 

elements. 450 

Fourthly, all significant details 纂勅岫津岻
, at a present time 建, are revisited to also predict whether 451 

their significance is likely to remain or increase at time 建 髪  ッ建, with ッ建 denoting the simulation 452 

time-step. Such a detail is here referred to as extra-significant and can be identified by: 453 穴寢勅岫津岻 半 に陳拍 袋怠 綱岫津岻     Eq 53 454 

In Eq. (53), 兼拍  is the order-of-accuracy of the prediction operator [21], which is chosen such that 455 計陳銚掴 判 兼拍 判 計陳銚掴 髪 な, with 計陳銚掴 being the polynomial-order of the DG solution. In this work, 兼拍  is 456 

taken equal to 1.5, though it may be useful to note that any other choice within this range was found 457 



appropriate. When a detail 纂勅岫津岻
 is extra-significant, the set of active sub-elements is enlarged to 458 

include, in addition to 荊勅岫津岻
, its child sub-elements 荊態勅岫津袋怠岻

 and 荊態勅袋怠岫津袋怠岻
. This step is necessary to ensure 459 

that no significant features in the adaptive flow solution, 憲 樺 岶月 髪 権┸ 圏岼, on 訣沈凋岫建岻 are overlooked on 460 訣沈凋岫建 髪  ッ建岻 when generating future details (Sec. 2.3.4). 461 

Finally, a DG2 solution on 訣沈凋岫建岻 can be decided by ascendingly inspecting the tree of details, 462 

starting from the coarsest details 纂待岫待岻
 and DG2 modes 四待岫待岻

, while decoding. That is, while climbing 463 

the details tree (券 噺 ど┸な┸に┸ ┼ and 券 判 詣 伐 な), Eq. (49) is successively applied to decode local DG2 464 

modes 四勅岫津岻
 on active sub-elements 荊勅岫津岻

. Inspection of details is aborted under two circumstances:  465 

(i) When a detail 纂勅岫津岻
 switches status to becoming insignificant for the first time, with its local 466 

DG2 modes 四勅岫津岻
 selected for generating the assembled DG2 solution on 訣沈凋岫建岻, or otherwise 467 

(ii) Inspection and decoding reached 訣沈岫挑貸怠岻
 with certain details 纂勅岫挑貸怠岻

 remaining significant, 468 

and their local DG2 modes 四勅岫挑貸怠岻
 are already decoded. Then, a last round of decoding is 469 

applied to yield the child modes 四態勅岫挑岻
 and 四態勅袋怠岫挑岻

 on 訣沈岫挑岻
 for inclusion while generating the 470 

assembled DG2 solution on 訣沈凋岫建岻. 471 

The adaptive DG2 solution can now be viewed as a series of carefully-selected DG2 modes forming 472 

an assembled DG2 solution on the non-uniform grid 訣沈凋岫建岻. Each local DG2 mode should then be 473 

updated by applying the scaled DG2 formulation as described in Sec. 2.3.3. Prior to this, the DG2 474 

modes representing the water height 月 should be restored, by subtracting the modes representing 475 

the topography 権 from those of the free-surface elevation 月 髪 権. Then, the scaled DG2 formulation 476 

can be applied to update the DG2 modes of the main flow data 憲 樺 岶月┸ 圏岼 as previously described 477 

(Secs. 2.1.3 and 2.1.4). 478 

 479 

2.3.3 RK2-DG2 update: elevating the modes of the assembled DG2 solution to time 建 髪 弘建 480 

By applying the scaled DG2 formulation described in Sec. 2.1.4, each local mode in 四勅岫津岻
, relevant to 481 

the main flow data 憲 樺 岶月┸ 圏岼, is updated within a standard RK2 time stepping. While doing so, key  482 



treatments are incorporated in the RK2-DG2 update to ensure stability around sharp solution 483 

gradients, together with conservative incorporation of source terms with wetting and drying. These 484 

treatments are well-reported for the unscaled RK2-DG2 method [41]. Herein, they are re-applied 485 

with few modifications to accommodate the scaling introduced to the present DG2 method and the 486 

changes related to using the standard SWE model instead of the pre-balanced model [19], and to 487 

further exploit the details ensuring the generation of a robust (assembled) DG2 solution. These 488 

treatments are summarised in the rest of this section. 489 

Double localisation and slope limiting: Local slope limiting is needed for certain slope 490 

coefficients 憲勅怠┸岫挑岻
 of the flow variables 憲 樺 岶月┸ 圏岼. Slope limiting is a necessary process prior to each 491 

RK stage to prevent development of Gibbs phenomena around sharp solution gradients. It should 492 

only be triggered at such portions in the solution, otherwise it can degrade the conservative 493 

character of DG2 modes in any other portions of the DG2 solution, or even affect robustness (e.g. 494 

see examples within [41, 42]). Therefore, double localisation is applied to cautiously restrict the 495 

application of the slope limiter to the portions of the assembled DG2 solution at which sharp 496 

gradients are about to form. The first localisation step consists of only considering the active slope 497 

coefficients at the maximum refinement level 岫詣岻, 憲勅怠┸岫挑岻
, for possible limiting. In fact, DG2 modes, 498 四勅岫挑岻

, at refinement level 岫詣岻 can only be active whenever sustained by a tree of significant details, as 499 

previously described in Sec. 2.3.2 and also proved in [43]. When this happens, 四勅岫挑岻
 should be 500 

representative of a local feature occurring in the assembled DG2 solution. Such a local feature can 501 

either be a sharp discontinuity, i.e. a shock wave, or shockless representing a solution kink (e.g. a 502 

front of a rarefaction wave) or a rapidly changing state (e.g. due to a wetting and/or a drying 503 

process). Therefore, a second localisation step is needed to avoid slope limiting around any 504 

shockless feature within the assembled DG2 solution. This can be achieved by further subjecting 505 

those active slope coefficients 憲勅怠┸岫挑岻
 to Kヴｷ┗ﾗSﾗﾐﾗ┗;げゲ shock detector [44], which is here used with a 506 

detection threshold д 9, instead of 1 [44], to ensure it only detects slope coefficients associated with 507 



the presence of a sharp solution discontinuity. After double localisation, the relevant slope 508 

coefficients can then be limited by a slope limiter function such as the Generalised minmod (i.e. Eq. 509 

2.9 in [35]),which is here used. Moreover, shock detection and limiting is applied component-wise 510 

on 憲 樺 岶月 髪 権┸ 圏岼, with the component 月 髪 権 used instead of 月 to ensure that the presence of sharp 511 

terrain gradients will not mistakenly trigger any slope limiting on the slope coefficients representing 512 

the water height 月. After double localisation and limiting, limited slope coefficients for 月 can be 513 

deduced from the limited slope coefficents of 月 髪 権, by subtracting the slope coefficients of 権. 514 

It may be useful to note that without double localisation the quality of the assembled DG2 515 

solution に compared to the DG2 solution on a uniform grid に might undergo more significant 516 

deterioration as a result of unnecessary calls of the Generalised minmod limiter. In effect, the limiter 517 

tends to either zero or unnecessarily substitute the true DG2 slope coefficients. In any case, this 518 

leads to false slope coefficients being used during encoding (Eq. 48) resulting in false details in the 519 

compressed MWDG2 solution, which would manifest themselves in a deteriorated assembled DG2 520 

solution after decoding (Eq. 49).  521 

Well-balanced and depth-positivity-preserving DG2 modes: The selected DG2 modes forming 522 

the assembled DG2 solution on 訣沈凋岫建岻 are revised based on the wetting and drying condition 523 

described in [41], which is applied here with the following changes. Firstly, Eq. (19) is used to 524 

generate the original Riemann states for the components 憲 樺 岶月 髪 権┸ 月┸ 圏岼, instead of Eq. (12) in 525 

[41]. Secondly, revised states for the components 憲 樺 岶権┸ 月 髪 権┸ 圏岼 are reconstructed from original 526 

states under conditions ensuring both depth-positivity and well-balancedness (i.e. using Eqs. (14-16) 527 

in [41]). These revised states should be used to calculate Riemann fluxes across the sub-elements 528 

forming 訣沈凋岫建岻. Thirdly, Eqs. (13-14) and (21-22) are reused to reconstruct DG2 modes based on the 529 

revised Riemann states. Fourthly, revised DG2 modes of the 月 variable are deduced from those of 530 

the 月 髪 権 variable by subtracting the revised DG2 modes of the 権 variable. Finally, revised DG2 531 

modes of 憲 樺 岶権┸ 月┸ 圏岼 and Riemann fluxes become availabe to evaluate the DG2 operators (Eqs. 25-532 

26). 533 



When applying the present wetting and drying condition, it may be useful to note two key 534 

aspects. The first is about the continuity property of the DG2 topography projection in Eq. (20). 535 

Although Eqs. (21-22) ensure that the continuity of the DG2 topography projection holds on a static 536 

uniform grid [14], this property does not necessarily hold for the assembled DG2 topography 537 

projection on 訣沈凋岫建岻. In fact, this topography projection is subject to constant decoding (Eq. 49) from 538 

the compressed MWDG2 solution based on coefficients (Eqs. 34-35 and 40-41) associated with 539 

decompositions from essentially discontinuous functions (Eqs. 31-32 and 36-37). Hence, involving 540 

the free-surface elevation 月 髪 権 as an intermediate variable (as in [41]) is found necessary to achieve 541 

wetting and drying without relying on the continuity property for the assembled DG2 topography 542 

projection on 訣沈凋岫建岻. 543 

The second aspect is about a specific time-step restriction criterion to ensure depth-positivity for 544 

the average coefficients with time evolution. By denoting 岫月勅待岻痛 and 岫月勅待岻痛袋ッ痛 the average 545 

coefficients of the water height variable at times 建 and 建 髪 ッ建, respectively, the following formula 546 

can be obtained (using a similar reasoning as in [41]):  547 岫月勅待岻痛袋ッ痛 半 岷な 伐 に 系堅峅 岫月勅待岻痛    Eq 54 548 

In Eq. (54), 系堅 stands for the Courant number relative to the CourantにFriedrichsにLewy condition, 549 

which restricts the time-step size ッ建 within explicit time integration schemes. From Eq. (54), it is 550 

clear that, whenever 岫月勅待岻痛 半 ど, 系堅 must be 判 ど┻の to also ensure that 岫月勅待岻痛袋ッ痛 半 ど. While condition 551 

(54) may be irrelevant for the RK2-DG2 method for which 系堅 判 ど┻ぬ [35], it is found critical to 552 

preserve the stability of its first-order finite volume variant for which 系堅 判 な, as described later (Sec. 553 

2.4). 554 

Scaled implicit friction term discretisation: Prior to the double localisation and limiting process, 555 

the DG2 modes of the discharge are modified to add friction contribution as done for the unscaled 556 

DG2 formulation (i.e. see Sec. 2.5 within [41]). The same approach is applied for the scaled DG2 557 

method used in this work, leading to similar expressions as in [41] (i.e. Eq. 36 in Sec. 2.5 of [41]) for 558 



adding friction into the discharge slope coefficients, but without having any of the ヂぬs due to to the 559 

use of rescaled basis functions. 560 

 561 

2.3.4 Truncation and encoding: forming a new compressed MWDG2 solution 562 

To create new details, the updated DG2 modes, which form the assembled DG2 solution on 訣沈凋岫建岻, 563 

should be used to reform a compressed MWDG2 solution on 岶訣沈岫津岻岼津退挑貸怠┸┼┸怠┸待. DG2 flow modes for 564 

the components 憲 樺 岶月┸ 圏岼 are only defined for the sub-elements in 岶訣沈岫津岻岼津退挑貸怠┸┼┸怠┸待 that spanned 565 訣沈凋岫建岻. The other sub-elements remained inactive, hence have non-existent DG2 flow modes. In this 566 

work, truncation is the process of initialising zero details throughout 岶訣沈岫津岻岼津退挑貸怠┸┼┸怠┸待, in particular 567 

at the inactive sub-elements to keep them subject to potential activation in the next round (i.e. 568 

while redoing the process described in Sec. 2.3.2). Over the active sub-elements, belonging also to 569 訣沈凋岫建岻, encoding is done by successively applying Eq. (48), level-wise in decending order. This 570 

generates new flow details from the updated DG2 modes and thereby addresses any irrelevant 571 

zeroing introduced previously by truncation. As in the pre-processing step (Sec. 2.3.1), encoding 572 

should be applied on the components 憲 樺 岶月 髪 権┸ 圏岼. After truncation and encoding, a full set of 573 

new details 岷纂勅岫津岻峅津┸勅 is available, for which an alternative set of normalised details 岷穴寢勅岫津岻峅津┸勅 can be 574 

produced via Eq. 50 (see Sec. 2.3.1). With new sets of details in place, the process (Secs. 2.3.2-2.3.4) 575 

can be repeated to evolve the adaptive solution up to a specific simulation time. 576 

 577 

2.4 First-order variant: adaptive Haar Finite Volume (HFV1) scheme  578 

The HFV1 adaptive solution is effectively an MWDG1 method formulated upon the same scaling and 579 

wavelet basis described in Secs. 2.1-2.3, but only considering the the zeroth component of the 580 

Legendre basis, i.e. 鶏待岫行岻 噺 な, hence neglecting the slope coefficents. Now the local approximate 581 

solution 鍬朕 in Eq. (11) becomes piecewise-constant, which can be initialised by Eq. (13) and updated 582 

by the operator (17). The filter matrices are thus made of a single scalar, given by: 583 屈待 噺 屈怠 噺 屑待 噺 伐屑怠 噺 な【ヂに       Eq 55 584 



with which Eqs. (48-49) are applied to encode and/or decode coefficents 四勅岫津岻
 and/or 纂勅岫津岻

. These 585 

coefficients now include only one component representing the piecewise-constant averaged data. 586 

The adaptive HFV1 solution is processed as described in Sec. 2.3, while omitting all the routines 587 

involving slope coefficents (e.g. double localisation and limiting). Explicit first-order time marching is 588 

applied for time integration, but with Courant number not exceeding 0.5 to ensure depth-posivity 589 

(see Sec. 2.3.3). For comparison purposes, the highest permissible Courant number shared by the 590 

MWDG2 and HFV1 adaptive solutions, i.e. 系堅 噺  ど┻ぬ, is chosen to run all the simulations in Sec. 3. 591 

 592 

Figure 1. V;ヴｷ;デｷﾗﾐ ﾗa ふ;ぶ ﾐﾗヴﾏ;ﾉｷゲWS ж2 water height error at 建 = 2.5 s and (b) total CPU time for the 40-second 593 

long simulation of a frictionless dam-break on a wet domain, using adaptivity thresholds from 綱 = 10-6 to 綱 = 594 

10-1. Adaptive HFV1 and MWDG2 results are obtained using a baseline mesh with a single mother element (警 595 

= 1) and a maximum refinement level 詣 噺  ひ. Adaptive solutions are compared with FV1 and DG2 solutions on 596 

uniform meshes with 27 = 128 elements (marked by horizontal dotted lines) and 29 = 512 elements (marked by 597 

horizontal dashed lines). 598 



 599 

 Numerical tests 600 

Seven diagnostic tests are conducted to identify and compare the behaviour of the adaptive HFV1 601 

and MWDG2 solution schemes with reference to the standard first-order finite volume (FV1) and 602 

second-order discontinuous Galerkin (DG2) schemes on uniform grids. The first test considers a dam-603 

break flow on a wet and flat domain with a shock wave, on which wavelet-adaptivity related issues 604 

and choices are thoroughly analysed to find a setting where the adaptive solvers are as numerically 605 

accurate as their uniform grid counterparts at the finest resolution available, while remaining 606 

computationally more efficient. In the second test, the predictive accuracy of the adaptive solvers is 607 

re-explored for dam-breaks over a dry bed to assess their sensibility in tracking dynamic flow 608 

evolution with wet-dry front propagation over frictionless and frictional beds. Shockless dam-break 609 

flows over a dry domain are examined in the third test, to further inspect the properties of the HFV1 610 

and MWDG2 solvers in capturing a wet-dry front accelerating downhill and decelerating uphill. The 611 

fourth test introduces topography with discontinuities and kinks partially submerged below a lake-612 

at-rest. The test is used to examine the automated mesh generation capability of the adaptive HFV1 613 

and MWDG2 solvers, and to assess their ability to preserve well-balanced adaptive solutions with 614 

zero flow. In the fifth test, steady-state flows are explored to study the convergence property of the 615 

adaptive solvers to steady-state, and to verify further their well-balancedness for non-zero flows. 616 

The sixth test uses an oscillatory flow in a parabolic bowl to measure the numerical conservation of 617 

mass and energy in a frictionless and physically closed domain, where the solvers are subjected to a 618 

perpetually moving wet-dry fronts with periodically vanishing velocities. The final test simulates a 619 

laboratory flume experiment of a frictional dam-break flow over a trapezoidal hump, including an 620 

analysis of the trade-off between maximum refinement level and computational efficiency. 621 

 Except when clearly stated for a specific test, the following setting is used as a standard. 622 

Adaptive HFV1 and MWDG2 solution runs start from a single mother element (警 = 1) with nine 623 

refinement levels (詣 噺  ひ), hence yielding an adaptive grid 訣沈凋 with number of sub-elements 624 



between 20 = 1 and 29 = 512. Uniform FV1 and DG2 solution runs are made at the finest resolution 625 

accessible to the adaptive solvers, hence on grid 訣沈岫苔岻
 with 512 elements. All solution runs are carried 626 

out using the same basic parameters, namely 系堅 = 0.3 for the time-step selection, 10-4 for dry (sub-627 

)element detection, and 9 for Krivodonovaげゲ shock detector [44] with the MWDG2/DG2 solvers. All 628 

the simulation results presented here are made available for access as supplementary materials [33]. 629 

The Fortran 2003 code used to run these tests is available for download on Zenodo [34]. Instructions 630 

for running the models and interpreting the data are provided in Appendix 1. 631 

 632 

Figure 2. Solutions of the frictionless dam-break on a wet domain at 建 = 2.5 s obtained using a baseline mesh 633 

with a single mother element (警 = 1) and a maximum refinement level 詣 =  9.  Solutions obtained with the 634 



adaptive HFV1 and MWDG2 solvers are compared with the analytical solution for (a) water height 月, and (c) 635 

discharge 圏. (b) The refinement levels used by the adaptive solvers. 636 

 637 

3.1 Dam-break flow on a wet domain with shock 638 

Shock wave transients are characteristic of hydrodynamic flows, which are typically short-lived 639 

during a long time simulation. In reality, they could well represent an impact event perturbing the 640 

flow over the whole simulation domain. Fine mesh spacing is typically desired over a relatively short 641 

period of time when the shock occurs and propagates, but such resolution may no longer be 642 

required as the shock dissipates. To explore the characteristics of wavelet-based adaptivity within 643 

the HFV1/MWDG2 solutions with discontinuities including shocks, the classical dam-break test with 644 

a flat topography is considered. Therefore, a one dimensional frictionless and wet domain is 645 

assumed of length between 捲 = 0 and 捲 = 50 m with a hypothetical dam located at 捲 噺 にの m. The 646 

dam separates two water bodies with different initial values of the water height 月. The initial 647 

conditions are a zero discharge and a discontinuous water profile given by: 648 

月岫捲┸ ど岻 噺 犯は     件血 捲 判 にのに     件血 捲 伴 にの    Eq 56 649 

This results in a flow profile including a shock wave and rarefaction wave which propagate away 650 

from the initial dam position in opposite directions separated by a constant state [38]. Assuming 651 

open domain boundaries, both waves are expected to be present by 建 = 3 s before entirely exiting 652 

the domain by 建 = 10 s. Five series of runs are performed using different solver configurations with 653 

the same initial conditions, each with a specific purpose as detailed in the following. 654 

 655 

3.1.1 Optimal choice for the error threshold driving wavelet-adaptivity 656 

In this first series of tests, the adaptive HFV1/MWDG2 solvers are employed to identify the error 657 

threshold (Sec. 2.3.2) that ensures a fair balance between the numerical accuracy and the 658 

computational efficiency of the adaptive solvers. Adaptive and uniform solution schemes are run for 659 

デｴW ゲデ;ﾐS;ヴS ゲWデデｷﾐｪが ┘ｴｷIｴ ┞ｷWﾉSゲ ; ┌ﾐｷaﾗヴﾏ ｪヴｷS ┘ｷデｴ ヵヱヲ WﾉWﾏWﾐデゲ aﾗヴ デｴW FVヱっDGヲ ゲﾗﾉ┌デｷﾗﾐゲ ふら捲 = 660 



0.098 m) and an adaptive grid that can allow up to 512 sub-WﾉWﾏWﾐデゲ ふら┝(9) = 0.098 m) for the 661 

HFV1/MWDG2 solutions. To measure accuracy, the normalised ゾ態 error is calculated while varying 662 

the additivity error threshold from 綱 = 10-6 to 綱 = 10-1 (Figure 1a). The ゾ態 errors are evaluated for the 663 

water height variable at 建 = 2.5 s, when both shock and rarefaction waves are still present in the 664 

domain (see Figure 2). A normalised ゾ態 error is calculated as: 665 

ゾ態 噺 俵岾朕賑轍┸岫薙岻貸朕畷峇鉄綻掴岫薙岻岫朕畷岻鉄 綻掴岫薙岻        Eq 57 666 

where 月脹 is the analytical water height as described in [45]く TｴW ж2 error for the adaptive solutions is 667 

always evaluated on the finest uniform grid available, namely 訣沈岫挑岻
 に by prior conversion from a 668 

compressed solution on 訣沈凋 into an assembled solution on 訣沈岫挑岻
 (Sec. 2.2.5). In Figure 1a, the ゾ態 669 

errors of the adaptive HFV1/MWDG2 solvers for various error threshold values are compared to the 670 ゾ態 errors relative to their uniform FV1/DG2 counterparts on the finest grid. These results show that 671 

both adaptive HFV1/MWDG2 solvers can preserve the ゾ態 accuracy of the underlying uniform 672 

FV1/DG2 solvers, respectively, up to an error threshold value of 綱 = 10-2. Particularly, for 綱 г 10-2, the 673 

errors of the MWDG2 solution remain lower than the errors of the uniform FV1 solution on the 674 

finest grid, as expected due to the second-order accurate nature of the MWDG2 solver. With 綱 = 10-675 

1, the ゾ態 errors of HFV1/MWDG2 exceed the ゾ態 errors of uniform FV1/DG2 counterparts on the 676 

finest grid (with 29 elements), although they ヴWﾏ;ｷﾐ Hﾗ┌ﾐSWS H┞ デｴW ┌ﾐｷaﾗヴﾏ FVヱっDGヲげゲ Wヴヴﾗヴゲ デｴ;デ 677 

are two order of resolution coarser (on the grid with 27 WﾉWﾏWﾐデゲぶく NﾗﾐWデｴWﾉWゲゲが ┘ｷデｴ 0 Э ヱヰ-1, the ゾ態 678 

error of MWDG2 is noted to exceed the ゾ態 error of FV1 on the finest grid, making it a less compelling 679 

IｴﾗｷIW デﾗ a┌ヴデｴWヴ HWﾐWaｷデ aヴﾗﾏ デｴW DGヲ ;II┌ヴ;I┞く HWﾐIWが デｴW Wヴヴﾗヴ デｴヴWゲｴﾗﾉS 0 Э ヱヰ-3 is found to be a 680 

rational choice to keep the predictive accuracy of the adaptive solvers at the same level as their 681 

uniform counterparts on the finest grid available, and to achieve second-order accuracy with the 682 

MWDG2 solver. 683 

 Computational efficiency is measured as the CPU time needed to complete a 40-second long 684 

simulation and including the pre-processing step (Sec. 2.3.1). Figure 1b shows the CPU times for the 685 



adaptive HFV1/MWDG2 solvers evaluated for all the error thresholds used in the accuracy analysis 686 

(Figure 1a), along with the CPU times for the uniform FV1 and DG2 simulations on the finest grid 687 

(512 elements). As the threshold error increases, the CPU time of the adaptive HFV1/MWDG2 688 

solvers decreases initially and becomes practically constant aﾗヴ 0 д 10-3. For the considered threshold 689 

errors, the MWDG2 solver results in 2.3 to 140 times faster simulations than the uniform DG2 solver 690 

on the finest grid. In contrast, the adaptive HFV1 solver could only be faster than the uniform FV1 691 

solver on the finest grid for 綱 д 10-4, most likely due to dominance of the wavelet-adaptivity 692 

overhead (Sec. 3.1.5). On the finest uniform grid, the DG2 solver is found to be around 8 times more 693 

expensive than the FV1 solver, although the MWDG2 solver with 綱 = 10-3 exhibits a better 694 

performance that the FV1. 695 

These tests indicate that an error threshold of 綱 = 10-3 is an optimal choice for the adaptive 696 

MWDG2 solver to preserve the accuracy of the uniform DG2 solver without exceeding the runtime 697 

of the uniform FV1 solver. This choice is also suitable for the adaptive HFV1 solver to deliver 698 

simulations that are as accurate as the uniform FV1 solver but computationally more efficient. 699 

Unless stated otherwise, in the remainder of Sec. 3, 0 = 10-3 is adopted as a default choice for the 700 

error threshold value. 701 

 702 
Figure 3. CPU time to complete the 40-second long simulation of a frictionless dam-break on a wet domain. 703 

The number of mother elements and the maximum refinement level are varied together so that the adaptive 704 

grid allows maximum of 512 sub-elements. 705 

 706 



3.1.2 Adaptive solution predictability of relevant flow features (t = 2.5 s) 707 

The second series of tests compares adaptive solutions of water height and discharge, and mainly 708 

examines the grid prediction ability relevant to the HFV1 and MWDG2 solvers. The adaptive 709 

solutions are analysed at 建 = 2.5 s, when both shock and rarefaction waves still exist. The adaptive 710 

solutions are illustrated in Figure 2, which shows a good agreement with the analytical solutions. The 711 

HFV1 predictions (Figure 2a,c) show more pronounced numerical diffusion than the MWDG2 712 

predictions, which is in fact expected given the first-order nature of the HFV1 scheme. 713 

In terms of resolution predictability, as shown in Figure 2b, both HFV1 and MWDG2 correctly 714 

predict the finest resolution around the shock, i.e. refinement level (9), further showing ability to 715 

allow large gaps in resolution levels without failing. In regions of uniform flow, at the contact wave 716 

and downstream of the shock, the HFV1 and MWDG2 solutions predicted the coarsest resolutions at 717 

refinement level (5) and (4), respectively. It is not surprising that MWDG2 yields coarser refinement 718 

levels than HFV1 as the former always have smaller errors デｴ;ﾐ デｴW ﾉ;デデWヴ aﾗヴ 0 = 10-3  (Sec. 3.1.1). 719 

Nonetheless, both HFV1 and MWDG2 solvers seem able to sensibly select suitable refinement levels 720 

for their adaptive solution in the locality of a shock and throughout the contact wave (Figure 2 for 721 にど 判 捲 判 のど ). However, in prediction of the rarefaction wave, MWDG2 presents a remarkable 722 

behaviour as compared to HFV1. There, the MWDG2 solution uses refinement level (8) around the 723 

ヴ;ヴWa;Iデｷﾗﾐげゲ head and tail, preserves level (7) in between them, and allows a sharp drop to level (5) 724 

downstream of the head. Also, the MWDG2 solution does not even access the maximum refinement 725 

level (9), as opposed to the HFV1 solution that deploys it to indistinguishably compute the extent of 726 

the rarefaction. These results suggest that the wavelet-adaptivity combined with the MWDG2 solver 727 

can produce an adaptive solution that is more accurate and economical on grid resolution demands. 728 



 729 

Figure 4. Evolution of (a) element counts and (b) time-steps over the 40-second long simulation of a 730 

frictionless dam-break on a wet domain using the adaptive HFV1 and MWDG2 solvers.  The baseline mesh has 731 

a single mother element (警 = 1) with a maximum refinement level 詣 = 9, hence meshes have a maximum of 29 732 

= 512 sub-elements. The inset of panel (a) plots the final 30s of the simulation when the shock and rarefaction 733 

waves have exited the domain. 734 

 735 

3.1.3 Size of coarse baseline grid vs. maximum refinement level 736 

This third series of runs aims to analyse the trade-off between coarseness of the initial grid versus 737 

depth in maximum refinement level. A known adverse effect of conventional adaptive mesh 738 

refinement methods is the need of an initial coarse mesh that is yet fine enough for the flow solver 739 

to sense the triggering features of the initial flow conditions [10, 26], among many other adverse 740 

effects [7-9, 11, 12, 46]. Wavelet-based adaptivity can overcome this drawback, permitting the 741 

initialisation of simulations from a very coarse initial mesh as small as two elements [32] or even a 742 

single element (Secs. 3.1.1-3.1.2). To study this characteristic for the adaptive HFV1 and MWDG2 743 

solutions, they are here reconsidered with different settings based on doubling the baseline grid size 744 

in conjunction with systematic lowering of the maximum refinement level, but on the basis of fixing 745 



the maximum allowed number of sub-elements to 512. The parameters {警, 詣} are varied as {警, 詣} = 746 

{{1,9}, {2,8}, {4,7}, {8,6}, {16,5}, {32,4}, {64,3}, {128,2}, {256,1}}, and runs are made with 綱 = 10-3. As in 747 

Secs. 3.1.1, the accuracy of the adaptive solvers is evaluated at 建 = 2.5 s according to Eq. (57), and 748 

their computational efficiency is assessed based on the CPU runtime taken to complete a 40-second 749 

simulation. 750 

 In terms of accuracy, the same qualitative predictions are noted for HFV1 and MWDG2 751 

solvers, respectively, under the different setting for {警, 詣}. Each of the solvers show identical depth 752 

and discharge predictions, which are quite similar to those illustrated in Figure 2a,c, and for this 753 

reason not presented here. They also yield the same number and size for the sub-element forming 754 

their assembled solutions, consistent with the profile shown in Figure 2b. This observation is also 755 

reinforced by the fact that デｴW ゲ;ﾏW ﾐﾗヴﾏ;ﾉｷゲWS ж2 error magnitude (ヮﾉﾗデデWS ｷﾐ Fｷｪ┌ヴW ヱ aﾗヴ 0 Э ヱヰ-3) 756 

is retrieved for all the settings.  757 

As for the runtime efficiency, it is found to be different for each solver under the different 758 

settings. Figure 3 shows the CPU time cost for each solver relative to each setting {警, 詣}. As the 759 

number of mother elements exceeds 32 (Figure 3), the adaptive solvers experience an increase in 760 

CPU times, as expected. In fact, by 建 > 10 s, the flow domain contains very smooth profiles, for which 761 

the adaptive solvers can at best select an adaptive grid at the coarsest resolution allowable, with 警 762 

elements, prior to completing the 40-second simulation (Sec. 3.1.4). In particular, the runtime of 763 

MWDG2 becomes significantly more costly with increasing number of mother elements, to an extent 764 

that the underlying DG2 operational costs are overwhelming (Figure 3 for 警 д 128). However, as 765 

long as the baseline grids do not exceed 32 mother elements, the adaptive HFV1 and MWDG2 766 

solvers required similar runtime costs. These findings indicate that the accuracy of the adaptive 767 

solvers is not affected by severe coarsening in the baseline grid, but such an action is necessary to 768 

fully exploit wavelet-adaptivity traits to boost efficiency に in particular with MWDG2. 769 



 770 

Figure 5. CPU times for the simulation of a frictionless dam-break on a wet domain using (a) FV1 on a uniform 771 

mesh and adaptive HFV1, (b) DG2 on a uniform mesh and adaptive MWDG2.  Filled circles mark the end of the 772 

simulation at 建 = 40s.  Inset plots show the first 0.6s of CPU time during which the adaptive HFV1 and MWDG2 773 

simulations have completed. 774 

 775 

3.1.4 Coarsening ability and time-step size over long time evolution 776 

The fourth series of runs investigates the dynamic behaviour of the adaptive solutions as the 777 

transient dam-break evolves and dissipates in the open computational domain during the 40-second 778 

simulation. The standard setting is used to re-run the HFV1/MWDG2 solvers together with the 779 

default error threshold, while inspecting their coarsening ability and the size of their time-step as 780 

time evolved. Figure 4 shows the time history for the number of sub-elements and of the time-step 781 

size. During the presence of the rarefaction wave in the domain, 建 < 10 s, Figure 4a reveals that the 782 

HFV1 solver requires 3 times more sub-elements than the MWDG2 solver. In line with the results in 783 

Sec. 3.1.2 (see Figure 2), Figure 4a shows that HFV1 に with its piecewise-constant basis に involved a 784 



maximum of 233 sub-elements to represent the sloping rarefaction wave, whereas MWDG2 に with 785 

its piecewise-linear basis に uses just 83 sub-elements for representing the same rarefaction wave 786 

and does that more accurately than HFV1. Beyond 建 = 10 s, the maximum number of sub-elements 787 

with MWDG2 shows much faster decrease than with HFV1 and reaches the single mother element 788 

about 10 s earlier (see zoom-in portion in Figure 4a). This behaviour is expected with both solvers as 789 

by 建 > 10 s the waves exited the domain and only small solution perturbations remain. Relatedly, the 790 

time histories of the adaptive time-step size are illustrated in Figure 4b, showing predominantly 791 

larger time-steps with MWDG2 than with HFV1. The first noticeable increase in time-step size for the 792 

MWDG2 solver is achieved by 建 = 3.5 s when the shock wave exits the domain. More increase in 793 

time-step size is seen by 建 = 10 s when both waves have exited the domain. This increase becomes 794 

more significant from 建 > 23 s, when MWDG2 uses less than four sub-elements. From 建 > 27 s, the 795 

MWDG2 solver uses a time-step around ら建 = 1.5 s, which is roughly twice the time-step used by 796 

HFV1 over this period. This analysis supports the findings highlighted at the end of Sec. 3.1.2, 797 

suggesting that the MWDG2 solver is more accurate and less CPU intensive for simulations over 798 

large spatial domains and long-time scales. 799 

 800 

Figure 6. Nﾗヴﾏ;ﾉｷゲWS ж2 water depth error at 建 = 1.3 s for the simulation of a frictionless dam-break on a dry 801 

domain, using adaptivity thresholds from 綱 = 10-6 to 綱 = 10-1. Adaptive HFV1 and MWDG2 results are compared 802 

with those of the FV1 and DG2 solvers on uniform meshes with 128 elements (dotted lines) and 512 elements 803 

(dashed lines). 804 



3.1.5 Computational overhead due to wavelet adaptivity 805 

The final series of tests examines the computational overhead associated with wavelet-adaptivity in 806 

the HFV1 and MWDG2 solutions. Wavelet-adaptivity reduces the number of sub-elements, 807 

producing coarser solutions that allow longer time-steps (Sec. 3.1.4). Fewer sub-elements and bigger 808 

time-steps reduce the overall computational cost (Secs. 3.1.1 and 3.1.4), but the compression and 809 

assembly mechanisms (via transformations (48) and (49) as detailed in Sec. 2.3) involved in the 810 

adaptivity calculations introduce some computational overhead that may dominate the overall 811 

computational cost (Figure 1b). To identify the extent of this overhead, the computational trade-off 812 

between the adaptive calculations and the uniform ones is analysed considering their cumulative 813 

CPU runtimes, respectively, throughout the 40-second simulations (Figure 5). The adaptive and 814 

uniform solvers are run based on the standard setting. 815 

In Figure 5a, the evolution of the cumulative runtimes generated by the FV1 and HFV1 are 816 

compared. For the first 15 s, the adaptive HFV1 solver is found to be slower than the uniform FV1 817 

solver due to the computational overhead associated with wavelet-adaptivity. Later, after the shock 818 

and rarefaction waves exit the domain, the adaptive HFV1 solution is coarsened aggressively (Figure 819 

4) and the associated gain in computational efficiency is seen to outweigh the adaptivity overhead. 820 

Nonetheless, the entire 40-second long HFV1 simulation is noted to complete in less than half the 821 

CPU time of the uniform FV1 simulation on the finest grid. This indicates that adaptive HFV1 822 

modelling is more practical when simulating flows with smooth profiles. With the adaptive MWDG2 823 

solver, as shown in Figure 2b, the computational overhead due to wavelet-adaptivity remains 824 

insignificant relative to the uniform DG2 simulation. Also, this overhead is found to be lower than 825 

the wavelet-adaptivity overhead experienced in the HFV1 simulation (compare the zoom-in portions 826 

in Figure 5a and Figure 5b) に at least for 建 < 15 s when the rarefaction did not leave the domain. 827 

Most strikingly, the adaptive MWDG2 solver is found to complete the 40-second simulation almost 828 

as quickly as the adaptive HFV1 solver. 829 



In summary, when simulating a dam-break flow with a shock occurring on a wet domain, the 830 

adaptive HFV1/MWDG2 solvers ┘ｷデｴ 0 Э ヱヰ-3 preserve the numerical accuracy of their corresponding 831 

uniform FV1/DG2 solvers. HFV1/MWDG2 are most effective on very coarse baseline grids down to a 832 

single mother element; once the waves have left the domain, both solvers are able to represent the 833 

spatially uniform solution with just one element. HFV1 is about twice as fast as FV1, and MWDG2 is 834 

about 20 times faster than DG2, with MWDG2 achieving greater accuracy than HFV1 at the same 835 

speed. 836 

 837 

 838 

Figure 7. Water height at 建 = 1.3 s for the simulation of a frictionless dam-break on a dry domain, comparing 839 

the analytic solution with numerical solutions for the adaptive HFV1 and MWDG2 solvers with an adaptivity 840 

threshold (a) 綱 = 10-3 and (b) 綱 = 10-2. (c, d) Refinement levels for the corresponding solutions.  Simulations are 841 

performed on a baseline mesh with a single mother element and a maximum refinement level 詣 = 9 marked by 842 

a horizontal dotted line. 843 

 844 

3.2 Dam-break flow on a dry domain without shock 845 

As shown in Sec. 3.1, wavelet-adaptivity can easily refine the solution in the locality of a shock wave 846 

because wavelets act as a kind of jump detector [43]. However, a dam-break wave usually happens 847 

over a dry domain, without experiencing shock formation when topographic effects are neglected. In 848 



this case, a wetting front propagation occurs downstream. When friction effects are also neglected 849 

the wave-front shape is smooth, including a wet-dry front that should be modelled with enough 850 

resolution to properly track arrival time. Friction retards the arrival of the wet-dry front and 851 

steepens the wave-front, which must also be captured with fine resolution to represent the wave 852 

tip. In this test, some key properties of the adaptive HFV1 and MWDG2 solvers are re-explored when 853 

simulating dam-break flows over a dry and flat bed, considering frictionless and frictional cases for 854 

which analytical or semi-analytical solutions exist [45]. 855 

 856 

3.2.1 Frictionless case 857 

The test configuration is the same as the dam-break on a wet domain (Sec. 3.1.1), except for the 858 

initial water height 月, which is given by: 859 

月岫捲┸ ど岻 噺 犯は     件血 捲 判 にのど     件血 捲 伴 にの    Eq 58 860 

The adaptive HV1/MWDG2 solutions are considered with the standard setting. Tests are run for 建 = 861 

1.3 s and ﾐﾗヴﾏ;ﾉｷゲWS ж2 errors are calculated, using Eq. (57) by differencing numerical solutions with 862 

the analytical solution for the same range of choices for the error threshold (between 綱 = 10-6 and 綱 863 

= 10-1). Figure 6 illustrates the respective ﾐﾗヴﾏ;ﾉｷゲWS ж2 errors for the HFV1/MWDG2 solvers. The 864 

aｷｪ┌ヴW ;ﾉゲﾗ ｷﾐIﾉ┌SWゲ デｴW ж2 errors of the FV1/DG2 solvers on two uniform grids with 27 = 128 865 

elements and 29 = 512 elements, showing lesser magnitudes with DG2 as expected. For all the error 866 

thresholds, the HFV1 and MWDG2 solution remained more accurate than the corresponding uniform 867 

FV1 and DG2 solutions on the grid with 128 elements (Figure 6). The MWDG2 solver is always more 868 

accurate than FV1, as opposed to the previous test (compare Figure 6 with Figure 1a). With 0 г ヱヰ-2, 869 

the HFV1 and MWDG2 solutions become almost as accurate as their corresponding uniform 870 

solutions on the finest grid, although they are somewhat less accurate. This behaviour is not 871 

observed in the previous test (compare Figure 6 with Figure 1a), where the ж2 errors of the 872 

HFV1/MWDG2 solvers overlap with the ж2 errors of the uniform FV1/DG2 solvers on the finest grid. 873 



Possibly, in this test, the water height and flow profiles are largely curved, which is the case where 874 

the FV1/DG2 solvers benefit more from an increase in the resolution of the uniform grid. Also, the 875 

flow states in the previous test remain unchanged over a significant portion in the domain (Figure 2), 876 

which causes less loss of relevant information within the HFV1/MWDG2 solvers に during 877 

(de)compression due to propagation of round-off errors in Eqs. (48-49). Here, DG2 and MWDG2 878 

;IｴｷW┗WS ﾉﾗ┘Wヴ ж2 errors than in the previous test, most likely owing to the double localisation 879 

process that switched off the slope limiter given the shockless nature of this dam-break flow. The 880 

results in Figure 6 indicate that 綱 = 10-3 and 綱 = 10-2 seem to be good choices to maximise the 881 

efficiency for HFV1/MWDG2 runs and deliver comparable accuracy to the uniform FV1/DG2 runs on 882 

the finest grid. 883 

 A qualitative analysis of the adaptive HFV1 and MWDG2 solutions at 建 = 1.3 s is presented in 884 

Figure 7a and Figure 7b, which includes a comparison between the water height profiles predicted 885 

by HFV1 and MWDG2 for the aforementioned error thresholds and the analytical solution. HFV1 and 886 

MWDG2 predictions are noted to be in good agreement with the analytical solution. However, the 887 

HFV1 solution is seen to experience numerical diffusion at the wet-dry front and at the tail of the 888 

wave, slightly overestimating the region upstream of the initial dam position and underestimating 889 

the position of the wave-front (see magnified portions within Figures 7a and 7b). These effects do 890 

not seem to improve when lowering the error threshold from 綱 = 10-2 to 綱 = 10-3 and are not visible 891 

in the MWDG2 solution, which provides better overall alignment with analytical solution as expected 892 

from a second-order accurate numerical model. 893 

In terms of resolution demand, as illustrated in Figures 7c and 7d, MWDG2 allows coarser 894 

refinement levels than HFV1 and chooses more sensibly where to use the finest levels. With 綱 = 10-2 895 

and 綱 = 10-3, the HFV1 solution involved the two finest refinement levels, namely still accessing levels 896 

(8) and (9) to represent the full extent of the sloping water surface (Figures 7c and 7d). The MWDG2 897 

solution does not exceed levels (7) to represent this zone except where it should, namely at the kink 898 

and wet-dry front. Notably, with 綱 = 10-2, MWDG2 uses level (6) and below along the smoothing 899 



wave, level (7) at the kink, but without accessing any higher refinement levels despite being 900 

available. Considering also that MWDG2 predictions are nearly similar at 綱 = 10-2 and 綱 = 10-3 (see 901 

Figure 6b and compare Figures 7a vs. 7b), lowering 綱 can reduce model accessibility to the finest 902 

refinement levels, as desired for some simulations that do not demand high resolution, while 903 

keeping these finest levels re-accessible as needed for other simulations (see also Sec. 3.7). 904 

 905 

Figure 8. Water height at 建 = 1.3s for the simulation of a frictional dam-break on a dry domain, comparing the 906 

semi-analytical solution with numerical solutions using the adaptive HFV1 and MWDG2 solvers with an 907 

adaptivity threshold (a) 綱 = 10-3 and (b) 綱 = 10-2. (c, d) Refinement levels for the corresponding solutions. 908 

Simulations are performed on a baseline mesh with a single mother element and a maximum refinement level 909 詣 = 9 marked by a horizontal dotted line. 910 

 911 

3.2.2 Frictional case 912 

For the frictional dam-break case, the configuration is identical, except that the Manning coefficient 913 券暢 = 0.016 m1/3 s-1, which is selected by calibration to fit the semi-analytical solution available in 914 

terms of the Chézy factor [45]. Adaptive HFV1 and MWDG2 solutions are produced for the same 915 

error thresholds 綱 = 10-3 and 綱 = 10-2, which are illustrated in Figures 8a and 8b, respectively, 916 

together with the semi-analytical solution at 建 = 1.3 s. Outside of the wave tip region upstream of 917 



the wet-dry front, HFV1/MWDG2 solutions perform very similarly to those in the corresponding 918 

frictionless test (Sec. 3.2.1). At the wave tip region, the semi-analytical solution is actually based on 919 

interpolation assuming a parabola [45]. As such, no exact comparisons can be made therein. 920 

Nevertheless, HFV1/MWDG2 solutions are found to agree well with the semi-analytical solution in 921 

the wave tip region, with MWDG2 producing a steeper wave-front profile. Figures 8c and 8d 922 

illustrate the corresponding refinement levels used by the adaptive solvers with 綱 = 10-3 and 綱 = 10-2, 923 

respectively. The adaptive HFV1/MWDG2 solutions show almost the same behaviour for the 924 

refinement levels as the frictionless case (compare Figures 7c and 7d with Figures 8c and 8d, 925 

respectively). However, at the wet-dry front, MWDG2 retains the maximum refinement level, even 926 

with 綱 = 10-2, due to the steeper wave-front induced by friction. 927 

 928 



Figure 9. Numerical solutions of (a, b) water elevation and (e, f) discharge for dam-breaks ascending upslope 929 

(left-hand panels) and descending downslope (right-hand panels) over a bed with a constant slope. Tests are 930 

performed using FV1 and DG2 solvers on a uniform mesh, and adaptive HFV1 and MWDG2 solvers.  For the 931 

adaptive solvers, (c, d) illustrate the refinement levels associated with the corresponding numerical solutions. 932 

 933 

The frictional and frictionless dam-break tests demonstrate further the ability of the 934 

adaptive HFV1 and MWDG2 solvers to simulate the propagation of dynamic waves over a dry 935 

domain. MWDG2 alleviates the numerical diffusion errors expected in the FV1 or HFV1 solutions 936 

with much lower refinement levels. With a threshold error of 綱 = 10-2, MWDG2 does not need to 937 

access the maximum refinement level, apart at the wet-dry front when the wave-front is steepened 938 

by friction. This suggests that the error threshold can be further relied on to reduce model access to 939 

the finest resolutions available as relevant for certain simulations, even when they are set to 940 

perform at very high resolution. 941 

 942 

3.3 Dam-break flow descending and ascending sloping and dry beds 943 

In this test, the performance of the adaptive HFV1/MWDG2 solvers is further examined for dam-944 

break flows featuring a wet-dry front that accelerates or decelerates as it descends or ascends a 945 

sloping bed. A dam-break wave upsloping is initially used in [47]. A more challenging variant is 946 

considered here, as proposed in [42], including a case where the wave downslopes. The initial dam is 947 

assumed centred at 捲 = 0 m in a [-15 m, 15 m] domain. Upstream of the dam (捲 < 0), the initial water 948 

elevation 月 髪  権 is equal to 8 m and the water height is assumed to be zero downstream of the dam 949 

(捲 д 0). A wall is assumed to exist at the upstream end (捲 = -15 m), which can be accounted for by 950 

reflective boundary conditions. Free outflow is assumed at the downstream end (捲 = 15 m) by 951 

transmissive boundary conditions. The topography is linear with a slope angle 糠, namely: 952 権岫捲岻  噺  伐な 髪  捲 建欠券岫糠岻     Eq 59 953 

Two cases are considered with ü ┗;ﾉ┌Wゲ ｷﾐ Eケく ふヵΓぶく Fｷヴゲデが ; S;ﾏ-HヴW;ﾆ ;ゲIWﾐSｷﾐｪ ┘ｷデｴ ü Э ヽっヶ ;ﾐSが 954 

second, a dam-break desIWﾐSｷﾐｪ ┘ｷデｴ ü Э -ヽっヶく The upslope dam-break is simulated for 建 = 1 s 955 



whereas the downslope dam-break is simulated for 建 = 0.75 s. Both cases are assumed frictionless. 956 

Simulations are performed using the standard setting with the uniform FV1 and DG2 solvers (on a 957 

grid with 512 elements) and with the adaptive HFV1 and MWDG2 solvers taken with the default 958 

error threshold (警 = 1, 詣 = 9 and 綱 = 10-3). 959 

In Figures 9a and 9b, the water depth predictions made by the adaptive HFV1/MWDG2 and 960 

uniform FV1/MWDG2 solvers are illustrated, showing comparable profiles that also match existing 961 

results [42]. The difference between the predictions is more noticeable for the discharge profiles as 962 

shown in Figures 9e and 9f. Compared to MWDG2/DG2, FV1/HFV1 predictions exhibit numerical 963 

diffusion at the start of the wave, as expected given the difference in the accuracy orders between 964 

the corresponding numerical formulations. Despite this, these discrepancies are more prominent for 965 

the upslope dam-break case (see 捲 = -11 m in Figure 9e vs. at 捲 = -6 m in Figure 9f) suggesting that 966 

the second-order variants provide better predictions with increased level of vigour in the wave 967 

propagation. At the wave-front, the discrepancies become more noticeable in both the upslope and 968 

downslope dam-break cases (see 捲 > 10 m in Figure 9e vs. at 捲 = 12 m in Figure 9f). Therein, 969 

informed further by the results in Figure 7a, MWDG2/DG2 are expected to more accurately follow 970 

the evolution of the wet-dry front as they both deploy piecewise-linear solutions to integrate 971 

topography and wetting and drying, as opposed to HFV1/FV1 that use piecewise-constant solutions. 972 

 In terms of refinement level predictions, which are illustrated in Figures 9c and 9d, the HFV1 973 

solution only used the maximum level (9), hence yielding identical results to those delivered by the 974 

FV1 solution in both upslope and downslope dam-break case. This over-prediction is associated with 975 

the use of a piecewise-constant basis in HFV1 that yields a staircase pattern for the linear 976 

topography approximation, making the solver trigger the maximum refinement level at 綱 = 10-3. 977 

Note that the proposed wavelet-adaptivity formulations indistinguishably use the details of the flow 978 

and topography variables to generate the adaptive solution. In contrast, the MWDG2 solver, in both 979 

cases, predicted refinement level (8) to track the start of the wave, and levels (6) and (7) thereafter 980 

upstream of the wave-front. For the upslope dam-break case, MWDG2 does not access the 981 



maximum refinement level (9) at the wave-front but uses refinement level (8) instead. This is in 982 

contrast with the downslope case where level (9) is retained therein, and level (4) is selected before 983 

upstream of the depression wave. Such differences in refinement level predictions are expected 984 

given the different flow physics involved in the upslope and downslope dam-break cases; namely, 985 

the wet-dry front advance is slower in the former case, whereas wave recession at the start is 986 

delayed in the latter case. 987 

 988 

Figure 10. Evolution of the wet-dry front for dam-breaks (a) ascending upslope and (b) descending downslope 989 

over topography with a constant slope. 990 

 991 

 The propagation of the wet-dry front in the numerical simulations can be compared to the 992 

analytical position of the wet-dry front 捲捗岫建岻 given by: 993 捲捗岫建岻  噺  に建 紐ぱ訣 cos岫糠岻  伐  な【に 訣 建態 tan岫糠岻  Eq 60 994 

The numerical position of the wet-dry front is calculated based on the first (sub-)element at which 995 

the water height is bigger than 10-2 m scanning (sub-)elements from left to right. Figures 10a and 996 

10b show the time evolution of wet-dry front positions for the upslope and downslope dam-break 997 

cases, respectively. As seen in Figure 10, FV1 calculates a slower front advance consistently under-998 

predicting the analytical solution. By the end of the simulations, FV1 (and identically HFV1) positions 999 

the front about 2 m and 1 m below the true position for the upslope and downslope dam-break 1000 

cases, respectively. The DG2 solver tracks the upslope and downslope wet-dry fronts more 1001 



accurately than the FV1 solver, however showing an over-predictive tendency. The adaptive 1002 

MWDG2 solver is seen to preserve the accurate solution of the underlying DG2 solver. The frontal 1003 

evolution obtained with the DG2 and adaptive MWDG2 solvers compares favourably with results 1004 

using the RKDG2-LFT solver presented in Kesserwani and Liang [42]1. In summary, the adaptive HFV1 1005 

solver is not found as effective as in the previous dam-break tests on flat beds because of its 1006 

piecewise-constant basis that can yield over-refinement when approximating a sloping topography 1007 

profile. The adaptive MWDG2 solver uses a piecewise-linear basis that can exactly represent the 1008 

sloping topography at any refinement level, so the MWDG2 solver is able to coarsen more effectively 1009 

than HFV1 while proving more accurate and economical. 1010 

 1011 

Figure 11. Discharge after 建 = 100 s for the simulation of the lake-at-rest using (a) the FV1 solver on a uniform 1012 

mesh and the adaptive HFV1 solver, (b) the DG2 solver on a uniform mesh and the adaptive MWDG2 solver. 1013 

The analytical solution remains at rest with zero discharge while the numerical discharge is close to machine 1014 

precision in all cases. 1015 

                                                           
1 In their Figure 4b, the analytical front evolution plot for the downslope case is incorrect. Their numerical 

results are more closely aligned with the correct analytical front evolution presented here in Figure 10b.  



 1016 

3.4 Well-balanced property and mesh generation ability 1017 

This test examines the initial mesh generation ability of the adaptive solvers and their well-balanced 1018 

property in reproducing a lake-at-rest. Unlike the idealised sloping topography in the previous test, 1019 

real terrain is fractally multi-scale, non-smooth, and often discontinuous, as in the presence of 1020 

buildings. Preserving quiescent flow over an irregular topography is challenging for numerical 1021 

shallow water models, in particular at partially wet zones located at bed discontinuities [14, 17]. To 1022 

assess the full extent of well-balancedness, a lake-at-rest test has been proposed [48] based on an 1023 

idealised topography with smooth, sloping and discontinuous regions (see Figure 12). 1024 

 1025 

Figure 12. Topography profiles for the simulation of the lake-at-rest using (a) the adaptive HFV1 solver, (b) the 1026 

adaptive MWDG2 solver. The idealised topography has a smooth, curved hump (left), triangular hump (centre) 1027 

and discontinuous, rectangular hump (right). The water elevation, topography profile and corresponding 1028 

refinement levels are plotted on the same axis. Solutions are obtained using a baseline mesh with a single 1029 



mother element and a maximum refinement level 詣 = 9.  Markers show cell centre positions, and the full, 1030 

piecewise representation of topography is plotted. 1031 

 1032 

The lake-at-rest is defined on [0 m, 50 m] with an initial water elevation 月 + 権 = 2 m such that three 1033 

scenarios occur: exactly dry at a peak (月 = 0 m at the curved hump), submerged portion (月 > 0 m at 1034 

the triangular hump) and unsubmerged portion with two wet-dry fronts (月 < 0 m at the rectangular 1035 

hump). The adaptive and uniform solvers are applied to compute the lake-at-rest conditions with 1036 

zero initial discharge (圏 = 0 m2 s-1). Simulations are executed for a relatively long time evolution, 1037 

namely 建 = 100 s corresponding to about 16,000 time-steps, considering two error thresholds 瀑 = 10-1 1038 

and 瀑 = 10-3 with the standard setting (警 = 1 and 詣 = 9). A robust and well-balanced solver should 1039 

preserve the initial water state and the initial zero discharge unperturbed as time evolves. 1040 

 Figure 11 shows the discharges computed by the adaptive and uniform solvers. All the 1041 

numerical discharges are observed to be very close to machine precision (Figure 11) and the initial 1042 

water elevation remains unchanged (Figure 12) for all the solvers throughout the simulation. Slightly 1043 

larger discharge predictions are noted with MWDG2 at 瀑 = 10-3 than with MWDG2 at 瀑 = 10-1 (Figure 1044 

11b) and with HFV1 (Figure 11a). This behaviour is expected as the smaller the 瀑, the more MWDG2 1045 

will access Eqs. (48-49), causing more knock-on effects due to rounding of the irrational numbers 1046 

involved in the filter banks. Nonetheless, this increase in error is negligible even after very long time 1047 

evolution. Figure 11b also shows two spikes in the discharge predictions occurring around the 1048 

discontinuities of the rectangular hump for DG2 and MWDG2 at 瀑 = 10-3. These spikes, however, do 1049 

not grow over the 100-second long simulation, and their magnitude is noted to be smaller with grid 1050 

coarsening (e.g. compare with the MWDG2 predictions at 瀑 = 10-1). These results confirm that the 1051 

adaptive HFV1/MWDG2 solvers are well-balanced. Noting also that the negative water height below 1052 

the rectangular hump remains unmodified with time evolution (Figure 12), the sharp-edges of the 1053 

rectangular hump effectively become (internal) boundaries, which there is no need to manually 1054 

recognise since the initial water elevation can intersect the topography without affecting the well-1055 



balancedness of the solution. This property seems therefore to be instrumental to deal with the 1056 

presence of buildings during the mesh generation process. 1057 

Since 月 髪 権 and 圏 are unvarying in this test, the assembled initial (adaptive) solution is solely 1058 

selected driven by the topographic features. The well-balanced HFV1/MWDG2 solvers can therefore 1059 

be used as mesh generators subject to choosing an error threshold. The mesh generation ability of 1060 

these solvers is particularly explored by further analysing their refinement level predictions. Figures 1061 

12a and 12b include the refinement levels predicted by the HFV1 and MWDG2 solvers, respectively. 1062 

At the rectangular hump, both HFV1 and MWDG2 solvers are seen to select the maximum level (9) 1063 

at the sharp edges, and to coarsen effectively in-between them where the topography is smooth. 1064 

For this hump, the smooth portion is flat and the sharp-edged portions are strongly discontinuous. 1065 

The former portion is readily represented by coarse piecewise-constant and piecewise-linear data, 1066 

while the latter portion can easily be detected by both representations. The choice of the error 1067 

threshold seems to have little effect on representing this obstacle, as very similar refinement levels 1068 

are predicted therein by both HFV1 and MWDG2 solvers at 瀑 = 10-3 and at 瀑 = 10-1. 1069 

The curved and triangular humps are less easily represented by the HFV1 piecewise-constant 1070 

basis: at 綱 = 10-3, HFV1 used the maximum refinement level (9) in these two regions (Figure 12a). 1071 

More effective coarsening at these two humps is noted by choosing 綱 = 10-1 where HFV1 uses only 1072 

refinement levels (8) or below. MWDG2 coarsens the triangular hump much more sensibly than 1073 

HFV1 at 綱 = 10-3: it uses the maximum refinement level only at the kinks at the base of the triangle 1074 

(Figure 12b), and much coarser levels at the tip that is positioned exactly at the centre of the 1075 

domain. At the curved hump, MWDG2 still predicts the maximum refinement level (9), even at 綱 = 1076 

10-3, which could be signalling that more resolution is needed to cover curved terrain shapes. With 綱 1077 

= 10-1, the triangular and curved hump are relatively less-resolved with MWDG2 than with HFV1, 1078 

with MWDG2 predicting level (7) and below. However, taking 綱 д ヱヰ-1 is likely to make the HFV1 or 1079 

the MWDG2 solvers unable to preserve enough accuracy (recall Secs. 3.1.1 and 3.2.1). 1080 



 1081 
Figure 13. Adaptive MWDG2 topography profile and corresponding refinement levels for the three humps 1082 

used in the lake-at-rest simulation. The profile is obtained using a baseline mesh with a single mother element 1083 

(警 = 1) and a maximum refinement level 詣 = 14. 1084 

 1085 

With a maximum refinement level 詣 = 9 and an error threshold 綱 = 10-3, MWDG2 used the 1086 

maximum refinement level at the discontinuities of the rectangular hump and the kinks of the 1087 

triangular hump as expected, but also throughout the curved hump. To explore whether the usage 1088 

of level (9) throughout the curved hump is an over-refinement or a requirement, the MWDG2 solver 1089 

is re-run by increasing the maximum refinement level to 詣 = 14 under the same error threshold. 1090 

Figure 13 shows the profile of the corresponding refinement levels. Remarkably, now the MWDG2 1091 

solver only accesses the maximum refinement level (14) at the strong discontinuities of the 1092 

rectangular hump. At the kinks, MWDG2 predicts level (12) for the triangular hump and level (13) for 1093 

the curved hump that has steeper kinks. Moreover, analysis of the MWDG2 solution provides 1094 

information on the necessary refinement levels required to represent the smooth humps, i.e. 1095 

suggesting the need for level (6) and (10) to discretise the slope and curvature involved in the 1096 

triangular and curved humps, respectively. These results imply that MWDG2 can effectively be used 1097 

to initialise mesh resolution in a localised manner as needed. This property could potentially be 1098 

useful towards making more effective use of very high resolution Lidar data without overloading the 1099 

simulation, and gives the user direct control over the extent of resolution deepness at which 1100 

topography is represented within the model (via choosing 綱). 1101 



 1102 

Figure 14. Convergence to a steady-state solution for (a) subcritical (b) supercritical and (c) transcritical flows. 1103 

Water height convergence is measured by calculating the ж2 difference between the current and previous 1104 

time-steps. 1105 

 1106 

3.5 Convergence to well-balanced steady states with non-zero flows over a hump  1107 

In this series of tests, the adaptive HFV1 and MWDG2 solvers are given steady boundary conditions 1108 

to study their convergence ability in reaching steady states with flows over a hump. Following 1109 

Delestre et al. [45], the one-dimensional domain is [0 m, 25 m] with a topographic hump given by:  1110 

権岫捲岻  噺  犯ど┻に 伐 ど┻どどの岫捲 伐 など岻態     if  ぱ m 隼 捲 隼 なに mど                                                             elsewhere  Eq 61 1111 

 1112 

Table 1. Initial water depth and boundary conditions for the subcritical, supercritical and transcritical steady-1113 

state tests. All steady-state tests have an initial discharge 圏 = 0 m2 s-1 1114 

Steady flow test Initial water 

height (m) 

Upstream 

discharge (m2 s-1) 

Upstream water 

height (m) 

Downstream water 

height (m) 

Subcritical  2.0 4.42 に  2.0 

Supercritical  2.0 25.0567 2.0 に 

Transcritical with shock 0.33 0.18 に 0.33 

 1115 

Tests are performed to assess the rate of convergence upon three steady flow regimes: subcritical, 1116 

supercritical and transcritical with a stationary shock. The initial and boundary conditions used in 1117 

each tests are available in Table 1. Simulations are performed with the uniform FV1 and DG2 solvers 1118 

and the adaptive HFV1 and MWDG2 solvers both taken with the standard setting and 瀑 = 10-3. A 1119 

simulation is set to stop whenever the ж2 difference in water height between the current and 1120 

previous time-steps becomes in the range of machine precision. The time history of the ж2 difference 1121 

for all three tests are shown in Figure 14.  1122 



 1123 

Figure 15. Steady state solutions of (a, b, c) water elevation and (g, h, i) discharge for subcritical flow (left), 1124 

supercritical flow (centre) and transcritical flow with a stationary shock (right). For the adaptive HFV1 and 1125 

MWDG2 solvers, (d, e, f) show the corresponding refinement levels. All adaptive solutions are plotted using an 1126 

adaptivity threshold 綱 = 10-3.  For the transcritical case, an additional solution is plotted using the adaptive 1127 

MWDG2 solver with 綱 = 10-5. 1128 

 1129 

The FV1, DG2, HFV1 and MWDG2 solvers all converge to machine precision in the subcritical 1130 

test (Figure 14a) and supercritical test (Figure 14b). For the subcritical test, all solvers converge to 1131 

machine precision within about 300 s to 500 s, with the HFV1 and MWDG2 solvers being slightly 1132 

faster than their FV1 and DG2 counterparts (Figure 14a). In the supercritical test, the FV1 and DG2 1133 

solvers converge after about 10 s, with the adaptive solvers converging slightly later (Figure 14b). 1134 

Compared to the supercritical case, converging to steady subcritical flow takes longer because the 1135 

flow is relatively weak and adjustment towards balance is consequently slower. The transcritical case 1136 



involves a transition from subcritical to supercritical flow, with another transition back to subcritical 1137 

flow downstream of a stationary shock. Unsurprisingly, convergence to this transcritical steady-state 1138 

is the slowest of all three cases (Figure 14c): FV1 and DG2 solvers on a uniform mesh converge to 1139 

machine precision after about 800 s, and the adaptive HFV1 solver after about 450 s. The adaptive 1140 

MWDG2 solver does not converge beyond 10-4 with 綱 = 10-3. This stagnation in ж2 difference with 1141 

MWDG2 at 綱 = 10-3 is likely due to the intrusion of the slope limiter triggered by noise eventually 1142 

accumulating from rounding of irrational numbers at the same location (see also the related 1143 

discussion in the next paragraph). Regardless, when 綱 is reduced to 10-5 the MWDG2 solver 1144 

converges to machine precision at a faster rate than the DG2 solver (Figure 14c). Overall, 1145 

convergence rates for all solvers are of the same order of magnitude for a given flow regime, and all 1146 

solvers are able to converge to machine precision. 1147 

The steady-state solutions of water elevation and discharge are included in Figures 15. For 1148 

all three flow regimes, the numerical solutions of water height are in close agreement, all showing 1149 

no visual difference with their corresponding analytical profiles [45], which were not illustrated for 1150 

clarity. As can be seen in Figures 15g-15i, anomalies in discharge predictions are apparent in the FV1 1151 

and HFV1 solutions. These anomalies are usually expected to reduce with an improved FV-based 1152 

topography discretisation technique apart where a shock develops [14, 26, 49]. However, all these 1153 

types of anomaly do not appear when using DG2 and MWDG2 solvers. Compared to the DG2 1154 

uniform solver, the MWDG2 solver presents some tiny anomalies in the discharge predictions. These 1155 

anomalies are different to those induced by the HFV1 and FV1 solvers and are comparatively 1156 

negligible. They are seen to occur at locations where there are gaps in refinement levels (see also 1157 

Figures 15d-15f). Most likely, these tiny anomalies are caused by constant (de)compression of the 1158 

MWDG2 solution at the same location when the adaptive grid and solution become static in time. 1159 

This can eventually lead to low levels of noise due to accumulation of round-off errors, which can 1160 

generate knock-on effects such as triggering the slope limiter as discussed in the previous paragraph. 1161 

Such tiny noises can be avoided by either increasing the convergence tolerance, or lessening 綱. 1162 



 1163 

Figure 16. Solution of (a, b) water elevation and (e, f) flow velocity for the simulation of the frictionless 1164 

parabolic bowl. The analytical solution is compared to numerical solutions using the FV1 and DG2 solvers on a 1165 

uniform mesh, and adaptive HFV1 and MWDG2 solvers are compared with  are shown after 9 periods (left-1166 

hand panels) and 9.5 periods (right-hand panels). For the adaptive HFV1 and MWDG2 solvers, (c, d) shows the 1167 

refinement levels for the corresponding solutions. 1168 

 1169 

In Figure 15, the corresponding refinement levels predicted by the adaptive HFV1 and 1170 

MWDG2 solutions are shown for the subcritical case (Figure 15d), supercritical case (Figure 15e), and 1171 

transcritical case (Figure 15f). Both solvers require higher refinement levels only in the locality of the 1172 



hump, with very few sub-elements involving the maximum refinement level (9), corresponding with 1173 弘捲(9) = 0.049 m. Elsewhere, the solution is coarsened aggressively down to refinement level (2) 1174 

corresponding with 弘捲(2) = 6.25 m. Using an adaptivity threshold of 綱 = 10-3, the adaptive MWDG2 1175 

solver coarsens the solution more effectively than HFV1 in the locality of the hump. For the 1176 

transcritical solution to converge to machine precision, MWDG2 required an adaptivity threshold 綱 = 1177 

10-5 and, with this choice, MWDG2 behaves similarly to HFV1, using the maximum refinement level 1178 

for the entire region of the hump (Figure 15f). In summary, with a suitable choice of adaptivity 1179 

threshold, all HFV1 and MWDG2 solvers converge to steady state solutions down to machine 1180 

precision at about the same rate as the FV1 and DG2 solvers on a uniform mesh. They are also found 1181 

to be as well-balanced as the underlying FV1 and DG2 uniform solvers. Adaptive HFV1 and MWDG2 1182 

solutions are coarsened down to refinement level (2), using elements that are 128 times coarser 1183 

than the finest elements. 1184 

 1185 

3.6 Conservation of integral properties for an oscillatory flow in a parabolic bowl 1186 

To analyse conservation properties over a long time evolution, the uniform and adaptive solvers are 1187 

applied to simulate an oscillatory flow over topography. As shown in Lhomme et al. [50], excessive 1188 

numerical diffusion in shallow water models acts to dissipate energy and damp oscillatory flows. 1189 

Assuming a frictionless topography, there are no sources or sinks of energy, which makes this test 1190 

suitable to challenge the ability of a shallow water model to conserve mass and energy in the 1191 

presence of moving wet-dry fronts. As in [45], an initially sloping water elevation is contained in a 1192 

parabolic bowl defined on a one-dimensional domain in the interval [0 m, 4 m], given by: 1193 権岫捲岻 噺 月待 岾 怠銚鉄 岫捲 伐 に岻態 伐 な峇     Eq 62 1194 

The exact solutions of the water height and the velocity are: 1195 

月岫捲┸ 建岻 噺 崔伐月待 峭磐怠銚 岫捲 伐 に岻 髪 喋紐態直朕轍 cos 磐紐態直朕轍銚 建卑卑態 伐 な嶌      if   捲怠岫建岻 判 捲 判 捲態岫建岻ど 兼                                                                                                         elsewhere Eq 63 1196 



懸岫捲┸ 建岻 噺 班稽 sin 磐紐態直朕轍銚 建卑      if   捲怠岫建岻 判 捲 判 捲態岫建岻ど 兼【嫌                                          elsewhere     Eq 64 1197 

where 捲怠岫建岻 and 捲態岫建岻 are the locations of the wet-dry interfaces at time t, 月待 = 0.5 m, and 欠 = 1 m 1198 

[45]. The initial water height and flow velocity conditions can be obtained from Eqs. (63-64). 1199 

Transmissive boundary conditions are imposed at both boundaries, but the parabolic bowl restricts 1200 

the water to the domain interior. The uniform and adaptive solvers are applied considering the 1201 

standard setting with the default error threshold (512 elements with the uniform solvers vs. 詣 = 9, 警 1202 

= 1 and 綱 = 10-3 with the adaptive solvers). Tests are integrated for 36.11 s, corresponding to 18 1203 

periods of oscillation. The period to complete one oscillatory cycle is 劇 噺  に講欠【紐に訣月待. The solution 1204 

of the parabolic bowl behaves like a pendulum, with turning points occurring every half period, 0劇, 1205 

0.5劇, 1劇, 1.5劇が ぐが ┘ｴWﾐ デｴW aﾉﾗ┘ ┗WﾉﾗIｷデ┞ ｷゲ ┣Wヴﾗく Aデ W;Iｴ ヮWヴｷﾗS ヰ劇, 1劇, 2劇が ぐが デｴW ;ﾐ;ﾉ┞デｷI;ﾉ ┘;デWヴ 1206 

elevation is equal to the initial water elevation and at each intermediate period 0.5劇, 1.5劇, 2.5劇が ぐが 1207 

the analytical water elevation is a mirror image of the initial water elevation. 1208 

 1209 

Figure 17. Evolution of (a) change in mass and (b) normalised total energy for the simulation of the frictionless 1210 

parabolic bowl. The 36.11 second-long simulation corresponds to 18 periods of oscillation. 1211 

 1212 

3.6.1 Qualitative comparisons after 9 periods 1213 

Numerical solutions using the FV1, DG2, adaptive HFV1 and MWDG2 solvers are compared with the 1214 

analytical solution in Figure 16. The DG2 and MWDG2 solutions of water elevation closely agree with 1215 



the analytical solution after 9 periods (Figure 16a) and 9.5 periods (Figure 16b). In contrast, 1216 

oscillations are damped by the first-order accurate FV1 and HFV1 solvers, and the water elevation 1217 

after 9 periods no longer reaches the maximum initial water elevation. For the velocity predictions, 1218 

the DG2 solver obtains calculations that are consistently close to the analytical solution of 懸 = 0 m s-1 1219 

after 9 periods (Figure 16e) and 9.5 periods (Figure 16f). The adaptive MWDG2 solver also achieves 1220 

small flow velocities except around the wet-dry fronts. The FV1 and HFV1 solutions have flow 1221 

velocity errors of about 0.4 m s-1 with larger error magnitudes in the locality of the wet-dry fronts. 1222 

The refinement levels predicted by the adaptive HFV1 and MWDG2 solvers are presented 1223 

corresponding to the solution after 9 periods (Figure 16c) and 9.5 periods (Figure 16d). The HFV1 1224 

solver uses the maximum refinement level (9) throughout the domain, as expected given the curved 1225 

shape of the parabolic topography (recall the analysis in Sec. 3.4). The adaptive MWDG2 solver uses 1226 

the maximum refinement level just at the wet-dry fronts, and temporarily in some dry regions where 1227 

small-scale noise occurs in the solutions. Such noise can be reduced by slightly increasing the error 1228 

threshold. Apart from these isolated regions, MWDG2 uses only refinement level (7), resulting in 1229 

almost four times fewer elements than the uniform solvers with 512 elements. 1230 

 1231 

3.6.2 Mass conservation and energy conservation 1232 

The frictionless parabolic bowl is a closed system with no sources or sinks of mass or energy. As the 1233 

water oscillates within the bowl, there is an exchange between kinetic and potential energy, but the 1234 

total energy is conserved. The time evolution of total mass and total energy is measured in order to 1235 

assess the conservation properties of the numerical solvers. Only the average coefficients are used 1236 

in both mass and energy calculations, which were evaluated for the assembled solution on 訣沈凋. That 1237 

is, the total mass produced by the adaptive solvers on 訣沈凋 is calculated as: 1238 警 噺 デ 岾月勅待┸岫津岻ッ捲勅岫津岻峇勅樺直日豚     Eq 65 1239 

From Eq. (65), the mass difference 弘警 is evaluated as 弘警岫建岻  噺  警岫建岻  伐  警待, with 警待 噺 警岫ど 岻 1240 

being the initial mass at 建 = 0 s. The mass difference is normalised relative to the initial mass as: 1241 



弘警撫岫建岻  噺  弘警岫建岻【警待    Eq 66 1242 

The total energy is calculated as the sum of kinetic and potential energy [51]: 1243 

継 噺 デ 犯釆怠態 月勅待┸岫津岻 岾懸勅待┸岫津岻峇態 髪 岾月勅待┸岫津岻 髪 権勅待┸岫津岻峇態 伐 岾権勅待┸岫津岻峇態挽 ッ捲勅岫津岻般勅樺直日豚   Eq 67 1244 

which is normalised relative to the initial total energy 継待 噺 継岫ど岻 such that: 1245 Ê岫建岻  噺  継岫建岻【継待        Eq 68 1246 

For the uniform solvers, Eqs. (65-68) are applied for their assembled solution on 訣沈挑 instead of 訣沈凋.  1247 

The time histories of the normalised mass difference are illustrated in Figure 17a for the FV1 1248 

and DG2 solvers on a uniform mesh, and the adaptive HFV1 and MWDG2 solvers. The FV1, HFV1 and 1249 

DG2 solvers conserve mass to machine precision (Figure 17a). The HFV1 solver retains refinement 1250 

level (9) yielding simulations on an equivalent grid as the FV1 solver, but at a higher cost: here, HFV1 1251 

does not zero any detail coefficient and so gets unnecessarily overloaded with overhead cost due to 1252 

Haar-wavelet adaptivity (recall the analysis in Sec. 3.1.5). Unsurprisingly, HFV1 delivers the same 1253 

level of conservativeness as the uniform FV1 solver for both mass and energy quantities (Figure 17). 1254 

The MWDG2 solver constantly altered refinement levels between (7) and (9), resulting in a loss of 1255 

information due to zeroing of detail coefficients. Given also that the multi-wavelet adaptivity of the 1256 

MWDG2 solver must filter both average and slope coefficients に via constant rounding of the 1257 

irrational numbers involved in the filters に these effects result in a very small, linear growth in mass 1258 

(Figure 17a). Nonetheless, MWDG2 mass conservation errors are still close to machine precision, 1259 

even after 18 periods of oscillation. The normalised total energy is also measured at each time-step 1260 

for the FV1, DG2, HFV1 and MWDG2 solvers (Figure 17b). As expected for a first-order solver, FV1 1261 

and HFV1 dissipate energy quite rapidly, losing about 13% of the initial energy after 18 periods of 1262 

oscillation. In contrast, the DG2 solver on a uniform mesh achieves excellent energy conservation, 1263 

losing less than 1% of the initial energy after 18 periods. Despite the adaptive MWDG2 solver 1264 

coarsening the solution to refinement level (7), it is only slightly more dissipative than the DG2 1265 

solver, with MWDG2 losing less than 2% of the initial energy. 1266 



For such a dynamic oscillatory flow over a curved topography with wet-dry fronts, HFV1 with 1267 綱 = 10-3, delivers the same predictive accuracy as the uniform FV1 solver on the finest grid, but is 1268 

expected to be more costly to run (Sec. 3.1.5). Employing HFV1 with bigger 綱 gives an under-1269 

performance relative to the present accuracy of FV1 and so may not be a feasible option for this 1270 

type of simulation. The DG2 solver on the finest uniform grid shows excellent conservation 1271 

properties for both mass and energy quantities. The adaptive MWDG2 is likely to be more efficient 1272 

than HFV1 for this type of simulation, and preserves the conservation properties of the DG2 solver 1273 

with inconsequential effects. 1274 

 1275 
Figure 18. Initial configuration of the dam-break over a trapezoidal hump following Ozmen-Cagatay and 1276 

Kocaman [52]. Nondimensionalised scales are used in subsequent figures. Illustrated aspect ratio is 5:1. 1277 

 1278 

3.7 Numerical simulation of a laboratory dam-break over a trapezoidal hump  1279 

Ozmen-Cagatay and Kocaman [52] conducted a laboratory flume experiment of a dam-break flow 1280 

over a trapezoidal hump. This test involves a wet-dry front advancing over a frictional topography, 1281 

wave overtopping on a building-like hump and a topographically-reflected shock wave. In particular, 1282 

it is an ideal benchmark to validate the practicality of the HFV1 and MWDG2 solvers in modelling 1283 

realistic aspects of shallow water flows in a multi-scale setting and in relation to the increase in 1284 

maximum refinement level. The physical experiment [52] was conducted in an 8.9 m long acrylic 1285 

glass flume, with the configuration illustrated in Figure 18. The topography and initial water 1286 

elevation profile are the same for the numerical tests presented here, with an initial zero discharge. 1287 

A reflective boundary condition is imposed at the upstream boundary and a transmissive boundary 1288 

condition is imposed downstream. The Manning coefficient for acrylic glass is 0.01 m1/3 s-1. The water 1289 



in the flume was photographed at regular time intervals and the water elevation profile was 1290 

measured to an accuracy of about ±1 mm. Experimental measurements of water elevation are 1291 

compared with numerical solutions at time 劇 = 11.9, 劇 = 23.05 and 劇 = 41.84, where 劇 is a 1292 

nondimensionalised time 劇 噺 紐訣月待 建 with 月待 = 0.25 m denoting the initial height behind the gate 1293 

located at 捲待 = 4.65 m. 1294 

 1295 

Figure 19. Snapshots of water elevation for the dam-break over a trapezoidal hump with friction at 1296 

nondimensionalised times (a, d) 劇 = 11.9 (b, e) 劇 = 23.05 and (c, f) 劇 = 41.84, where 劇 is a nondimensionalised 1297 

measure of time given by equation. Numerical solutions are obtained using FV1 and DG2 solvers on a uniform 1298 

mesh with に挑 elements, and adaptive HFV1 and MWDG2 solvers on a baseline mesh with a single mother 1299 

element and a maximum refinement level 詣, with (a, b, c) 詣 = 9, and (d, e, f) 詣 = 7. The nondimensionalised 1300 

elevation is 月【月墜  and the nondimensionalised length is 岫捲 伐 捲待岻【月待, with the plotted origin being the gate 1301 

position 捲待 = 4.65m. 1302 

 1303 

 Numerical solutions are obtained using the FV1 and DG2 solvers on a uniform mesh with に挑 1304 

elements, and adaptive HFV1 and MWDG2 solvers on a baseline grid with a single mother element, a 1305 

maximum refinement level 詣 and with the default error threshold (綱 = 10-3). Tests are performed 1306 

with 詣 = 7, 9 and 11 corresponding to a finest grid spacing of 弘捲岫胎岻 = 0.070 m, 弘捲岫苔岻 = 0.017 m and 1307 弘捲岫怠怠岻 = 0.0043 m, or respectively to 128, 512 and 2048 elements for the finest uniform grid.  1308 



 1309 

Figure 20. Cumulative CPU times to compete a 30-second numerical simulations (corresponding to T = 188 1310 

s) for the uniform FV1 and DG2 solvers on a uniform mesh with に挑 elements, and the adaptive HFV1 and 1311 

MWDG2 solvers on a baseline mesh with a single mother element and a maximum refinement level 詣: upper 1312 

part 詣 = 7, medium part 詣 = 9 and upper part 詣 = 11. 1313 

  1314 

As shown in Figures 19a-19c, at 詣 = 9, the adaptive and uniform solutions closely agree with the 1315 

experimental observations at 劇 = 11.9, 劇 = 23.05 and 劇 = 41.84, since the topography and fine-scale 1316 

flows are well-resolved at 弘捲岫苔岻 = 0.017m. While a similar behaviour for the adaptive and uniform 1317 

solutions is expected at 詣 = 11 as 弘捲岫怠怠岻  隼  弘捲岫苔岻, with 詣 = 7, the topography and fine-scale flow 1318 

cannot be sufficiently resolved by the FV1 and HFV1 solvers using a piecewise-constant basis 1319 

(Figures 19d and 19e). At 劇 = 11.9, FV1 and HFV1 simulations produce insufficient overtopping on 1320 

the lee side of the obstacle (Figure 19d) and, at 劇 = 11.9 and 劇 = 23.05 (Figure 19e), the reflected 1321 



wave is positioned far upstream compared to the experimental observations. Numerical diffusion is 1322 

particularly evident in the FV1 and HFV1 solutions at 劇 = 23.05 which is not present in the same 1323 

solutions on the finer mesh using 詣 = 9. In contrast, since the DG2 and MWDG2 solvers use a 1324 

piecewise-linear basis, the fine-scale features are still well-resolved even at 詣 = 7 with 弘捲岫胎岻 = 0.070 1325 

m. Using the same test, Kesserwani and Wang [15] achieved accurate DG2 solutions using a 1326 

significantly coarser mesh of 弘捲 = 0.22 m, and obtained second-order MUSCL-FV solutions with 1327 

errors similar to those obtained with the FV1 and HFV1 solvers. In terms of refinement level 1328 

predictions, both adaptive HFV1 and MWDG2 solvers are observed to fully refine around the 1329 

trapezoidal obstacle given the sloping character of its sides and the dynamic nature of the flow. To 1330 

realistically analyse efficiency benefits of the adaptive solvers, their cumulative CPU time costs are 1331 

further recorded for completing 30-second numerical simulations (corresponding to 劇 = 188 s). 1332 

The elapsed CPU time is measured at every time-step, and these time series are illustrated for 詣 1333 

= 7 (Figure 20 に upper part), 詣 = 9 (Figure 20 に middle part) and 詣 = 11 (Figure 20 に lower part). At 詣 1334 

= 7 with 弘捲岫胎岻 = 0.070 m, the FV1 and adaptive HFV1 solvers complete the simulation the fastest 1335 

(Figure 20 に upper part), but produce somewhat inaccurate solutions since the grid is relatively 1336 

coarse (Figure 19 に lower parts). Accurate solutions are achieved using the DG2 and MWDG2 solvers, 1337 

but the adaptive MWDG2 solver completes the simulation in about half the time of DG2 on a grid 1338 

with 27 = 128 uniform elements. At 詣 = 9 with 弘捲岫苔岻 = 0.017 m, the HFV1 and MWDG2 solvers 1339 

complete the simulation around the same time (Figure 20 に middle part). The DG2 solver is about 1340 

five times more computationally expensive and completes the simulation after 10.3 s of CPU time. 1341 

At this grid resolution, the FV1 solver remains the most computationally efficient choice, and 1342 

produces a solution with similar accuracy to the other solvers (Figure 19 に upper parts). At 詣 = 11 1343 

with 弘捲岫怠怠岻 = 0.0043 m, no improvement in solution accuracy is expected since the flow in the 8.9 1344 

m-long flume is already well-resolved with coarser meshes. However, at 詣 = 11, the adaptive 1345 

MWDG2 solver is, surprisingly, the first to finish the simulation, followed by the FV1 and adaptive 1346 

HFV1 solvers (Figure 20 に lower part) and, compared to the DG2 solver on a uniform mesh, the 1347 



MWDG2 solver is 27 times faster. Clearly, with increased maximum refinement level, MWDG2 tends 1348 

to become faster than the uniform FV1 solver on the finest grid and, ultimately than the HFV1 1349 

solver. In terms of resolution accuracy, taking 詣 = 11 is unnecessary for this test, as 詣 = 9 provide 1350 

sufficient resolution, but does still pay off with an ｷﾐIヴW;ゲW ｷﾐ MWDGヲ ゲﾗﾉ┗Wヴげゲ WaaｷIｷWﾐI┞く Gｷ┗Wﾐ ;ﾉゲﾗ 1351 

that MWDG2 provides superior accuracy with 詣 = 7 (i.e. up to a resolution of 0.070 m), the MWDG2 1352 

solver could be even more beneficial, in favour of accuracy, when the finest resolution involved in 1353 

the adaptive grid is roughly д 0.1 m. Hence, the MWDG2 solver seems to be a promising alternative 1354 

for simulations over a large domain (10 km and more in horizontal length scale) allowing multi-scale 1355 

features that are as small as 0.1 m, nonetheless at a lower runtime cost than the uniform FV1 solver 1356 

on the finest grid available and at nearly the same accuracy as the expensive uniform DG2 solver on 1357 

the finest grid. 1358 

 1359 

 Summary and conclusions 1360 

A scaled second-order Discontinuous Galerkin (DG2) solver of the Shallow Water Equations (SWE) 1361 

was presented (Sec. 2.1), with guiding principles on how it extends to incorporate multiresolution 1362 

analysis (Sec. 2.2) based on multiwavelets (MW) to form the so-called adaptive MWDG2 solver (Sec. 1363 

2.3). Our aim has been to explain this framework in a way that is understandable by water engineers 1364 

and modellers, and to unravel its relevant benefits for improving the accuracy, efficiency and 1365 

autonomy of Godunov-type hydrodynamic models. In the adaptive MWDG2 solver, flow and 1366 

topography data at various resolution levels are compressed in a single dataset of details, or wavelet 1367 

coefficients (Sec. 2.3.1). From these details, a multiresolution DG2 solution can be created and 1368 

assembled on a non-uniform grid by retaining the significant details and adding them to the coarsest 1369 

solution discretisation. Significant details were identified by comparing their magnitude to an error 1370 

threshold 瀑 (Sec. 2.3.2). The scaled DG2 solver can directly be applied to evolve the multiresolution 1371 

DG2 solution on an adaptive non-uniform grid (Sec. 2.3.3). Zero-valued detail coefficients were 1372 

imposed to complete the dataset of details as time evolved (Sec. 2.3.4). A first-order version was 1373 



produced based on the Haar wavelet within the Finite Volume (HFV1) method (Sec. 2.4). The 1374 

behaviour of the adaptive HFV1 and MWDG2 solvers was studied systematically and compared 1375 

against the standard first-order Finite Volume (FV1) and second-order Discontinuous Galerkin (DG2) 1376 

solvers on a uniform grid. Seven tests were used to diagnostically explore the performance of the 1377 

adaptive (multi)wavelet-based solvers, which covered all the elementary aspects relevant to 1378 

accurate, efficient and robust hydraulic modelling (Sec. 3). Adaptive solver simulations started from 1379 

a coarsest grid discretisation with 警 mother elements, with each allowing a maximum of に挑 sub-1380 

elements (a maximum refinement level 詣 yielding 警 г number of sub-elements г 警 に挑). The 1381 

uniform solver simulations considered the grid at the finest resolution available (with 警 に挑 1382 

elements). The numerical results consistently reinforced the conclusion that the (multi)wavelet-1383 

based solvers offer many attractive properties including the ability to: (i) automate the formulation 1384 

of an initial multiresolution mesh, (ii) use very few, or a single, mother element(s) as a baseline grid, 1385 

(iii) allow large gaps across resolution levels, (iv) preserve robustness, accuracy and conservation 1386 

properties of the standard uniform solvers, and (v) adapt modelling resolution and data simply with 1387 

reference to the user-prescribed error threshold 瀑.  1388 

More strikingly, findings from this study newly identify a range for the error threshold 瀑 1389 

where the adaptive MWDG2 solver can deliver simulations that are not only as accurate as the 1390 

uniform DG2 simulations but also faster than the simulations delivered by both the adaptive HFV1 1391 

solver and the uniform FV1 solver. Mainly, MWDG2 outperformed HFV1 as a result of the sloping 1392 

nature of its local piecewise-linear solutions, which allowed much more aggressive coarsening at the 1393 

zones in the flow solution and topographic data involving different levels of smoothness. At these 1394 

zones, the adaptive HFV1 solver consistently over-refined up to becoming even more expensive than 1395 

the uniform FV1 solver since HFV1 was dominated by a wavelet-adaptivity overhead. In contrast, the 1396 

adaptive MWDG2 solver more sensibly predicted coarser solutions and did not access the finest 1397 

resolution level unless necessary around very steep solution gradients. The efficiency of the adaptive 1398 

MWDG2 solver was found to increase by increasing the maximum refinement level 詣, though its 1399 



predictive accuracy remained visually close to the first-order solver predictions at a very fine 1400 

resolution, namely around ッ捲岫挑岻 г 0.07 m. Our results therefore offer new evidence that an MWDG2 1401 

modelling approach has the potential to increase the accuracy, runtime efficiency and spatial 1402 

coverage for hydraulic modelling applications for which the maximum refinement level is associated 1403 

with an urban resolution grid (approx. around 0.1 m in horizontal length-scale). A robust two 1404 

dimensional (2D) extension of the MWDG2 approach on quadrilateral elements is under 1405 

development and testing to enable a more realistic assessments of the true potential of 1406 

(multi)wavelet-based approaches for 2D hydraulic modelling applications. 1407 
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 1418 

Appendix 1: Instructions for running the FV1, DG2, HFV1 and MWDG2 solvers 1419 

Compilation 1420 

The seamless-wave numerical solvers are implemented in Fortran 2003 and can be compiled using a 1421 

recent version of GFortran and CMake.  Other fortran compilers have not been tested.  To compile 1422 

the code from the root directory of the unzipped Zenodo download: 1423 

mkdir build && cd build 1424 

cmake .. 1425 

make -j 1426 

Running the numerical solvers 1427 

The FV1, DG2, HFV1 and MWDG2 solvers are all implemented in a single executable, 1428 

run_simulation.  To display usage information about required and optional command line 1429 

switches: 1430 

https://www.seamlesswave.com/


./run_simulation --help 1431 

 1432 

All the test cases that appear in this article are preconfigured.  To run one of the test cases: 1433 

 1434 

./run_simulation <testCase> <maxRefinementLevel> --solver <solver> -1435 

-writer <writer> 1436 

where <testCase> is one of 1437 

dambreakwet       section 3.1 1438 

dambreakdry (frictionless), dambreakmanning (frictional) section 3.2 1439 

dambreakupslope, dambreakdownslope   section 3.3 1440 

lakeatrest        section 3.4 1441 

steadysubcritical, steadysupercritical, steadytranscriticalshock1442 

 section 3.5 1443 

parabolicbowlswashes      section 3.6 1444 

dambreakonehump       section 3.7 1445 

 1446 

To solve on a uniform mesh, use <maxRefinementLevel> to create a mesh with 2L elements, 1447 

and choose <solver> to be either fv1 or dg2.  To calculate an adaptive solution, include the 1448 

switch --epsilon <value> with <value> being a double precision number between 0 and 1.  1449 

When --epsilon is specified, adaptive refinement is allowed up to the given 1450 

<maxRefinementLevel>.  <solver> is still either fv1 or dg2 for an adaptive solution. 1451 

 1452 

The solver will write space-delimited plain text data depending on the choice of <writer>.  The 1453 

following writers output data corresponding to the end of the simulation: 1454 

cellCentreSolution topography, water depth, discharge and refinement level data 1455 

piecewiseSolution as cellCentreSolution, but data is at the interface limits 1456 

l2error   I;ﾉI┌ﾉ;デW デｴW ж2 error between numerical and analytic solutions 1457 

 1458 

The following writers output data at every timestep: 1459 

cpu    elapsed CPU time 1460 

timestep   ゲｷ┣W ﾗa らデ 1461 

elementCount  total element count 1462 

convergence  ж2 convergence in water depth 1463 

energy   domain integrals of mass and energy 1464 

wetDryFront  the position of the wet-dry front 1465 



sample   sample data at a specified --sample-position 1466 

 1467 

Additional, optional switches are documented by using ./run_simulation --help. 1468 

 1469 
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