5 research outputs found

    Assessing the role of anthropogenic and biogenic sources on PM₁ over southern West Africa using aircraft measurements

    Get PDF
    As part of the Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project, an airborne campaign was designed to measure a large range of atmospheric constituents, focusing on the effect of anthropogenic emissions on regional climate. The presented study details results of the French ATR42 research aircraft, which aimed to characterize gas-phase, aerosol and cloud properties in the region during the field campaign carried out in June/July 2016 in combination with the German Falcon 20 and the British Twin Otter aircraft. The aircraft flight paths covered large areas of Benin, Togo, Ghana and CĂŽte d\u27Ivoire, focusing on emissions from large urban conurbations such as Abidjan, Accra and LomĂ©, as well as remote continental areas and the Gulf of Guinea. This paper focuses on aerosol particle measurements within the boundary layer (<  2000 m), in particular their sources and chemical composition in view of the complex mix of both biogenic and anthropogenic emissions, based on measurements from a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS) and ancillary instrumentation. Background concentrations (i.e. outside urban plumes) observed from the ATR42 indicate a fairly polluted region during the time of the campaign, with average concentrations of carbon monoxide of 131 ppb, ozone of 32 ppb, and aerosol particle number concentration ( >  15 nm) of 735 cm−3 stp. Regarding submicron aerosol composition (considering non-refractory species and black carbon, BC), organic aerosol (OA) is the most abundant species contributing 53 %, followed by SO4 (27 %), NH4 (11 %), BC (6 %), NO3 (2 %) and minor contribution of Cl (<  0.5 %). Average background PM1 in the region was 5.9 ”g m−3 stp. During measurements of urban pollution plumes, mainly focusing on the outflow of Abidjan, Accra and LomĂ©, pollutants are significantly enhanced (e.g. average concentration of CO of 176 ppb, and aerosol particle number concentration of 6500 cm−3 stp), as well as PM1 concentration (11.9 ”g m−3 stp). Two classes of organic aerosols were estimated based on C-ToF-AMS: particulate organic nitrates (pONs) and isoprene epoxydiols secondary organic aerosols (IEPOX–SOA). Both classes are usually associated with the formation of particulate matter through complex interactions of anthropogenic and biogenic sources. During DACCIWA, pONs have a fairly small contribution to OA (around 5 %) and are more associated with long-range transport from central Africa than local formation. Conversely, IEPOX–SOA provides a significant contribution to OA (around 24 and 28 % under background and in-plume conditions). Furthermore, the fractional contribution of IEPOX–SOA is largely unaffected by changes in the aerosol composition (particularly the SO4 concentration), which suggests that IEPOX–SOA concentration is mainly driven by pre-existing aerosol surface, instead of aerosol chemical properties. At times of large in-plume SO4 enhancements (above 5 ”g m−3), the fractional contribution of IEPOX–SOA to OA increases above 50 %, suggesting only then a change in the IEPOX–SOA-controlling mechanism. It is important to note that IEPOX–SOA constitutes a lower limit to the contribution of biogenic OA, given that other processes (e.g. non-IEPOX isoprene, monoterpene SOA) are likely in the region. Given the significant contribution to aerosol concentration, it is crucial that such complex biogenic–anthropogenic interactions are taken into account in both present-day and future scenario models of this fast-changing, highly sensitive region

    Molecular hydrogen (H2) mixing ratio and stable isotopic composition (dD) at the Cabauw tall tower in the Netherlands (2008-2012)

    No full text
    Measurements of the stable isotopic composition (dD(H2) or dD) of atmospheric molecular hydrogen (H2) are a useful addition to mixing ratio (X(H2)) measurements for understanding the atmospheric H2 cycle. dD datasets published so far consist mostly of observations at background locations. We complement these with observations from the Cabauw tall tower at the CESAR site, situated in a densely populated region of the Netherlands. Our measurements show a large anthropogenic influence on the local H2 cycle, with frequently occurring pollution events that are characterized by X(H2) values that reach up to 1 ppm and low dD values. An isotopic source signature analysis yields an apparent source signature below -400 per mil, which is much more D-depleted than the fossil fuel combustion source signature commonly used in H2 budget studies. Two diurnal cycles that were sampled at a suburban site near London also show a more D-depleted source signature (-340 per mil), though not as extremely depleted as at Cabauw. The source signature of the Northwest European vehicle fleet may have shifted to somewhat lower values due to changes in vehicle technology and driving conditions. Even so, the surprisingly depleted apparent source signature at Cabauw requires additional explanation; microbial H2 production seems the most likely cause. The Cabauw tower site also allowed us to sample vertical profiles. We found no decrease in (H2) at lower sampling levels (20 and 60m) with respect to higher sampling levels (120 and 200m). There was a significant shift to lower median dD values at the lower levels. This confirms the limited role of soil uptake around Cabauw, and again points to microbial H2 production during an extended growing season, as well as to possible differences in average fossil fuel combustion source signature between the different footprint areas of the sampling levels. So, although knowledge of the background cycle of H2 has improved over the last decade, surprising features come to light when a non-background location is studied, revealing remaining gaps in our understanding

    The influence of government policies on the nurse practitioner and physician assistant workforce in the Netherlands, 2000–2022: a multimethod approach study

    No full text
    Abstract Background Many countries are looking for ways to increase nurse practitioner (NP) and physician assistant/associate (PA) deployment. Countries are seeking to tackle the pressing issues of increasing healthcare demand, healthcare costs, and medical doctor shortages. This article provides insights into the potential impact of various policy measures on NP/PA workforce development in the Netherlands. Methods We applied a multimethod approach study using three methods: 1) a review of government policies, 2) surveys on NP/PA workforce characteristics, and 3) surveys on intake in NP/PA training programs. Results Until 2012, the annual intake into NP and PA training programs was comparable to the number of subsidized training places. In 2012, a 131% increase in intake coincided with extending the legal scope of practice of NPs and PAs and substantially increasing subsidized NP/PA training places. However, in 2013, the intake of NP and PA trainees decreased by 23% and 24%, respectively. The intake decreased in hospitals, (nursing) home care, and mental healthcare, coinciding with fiscal austerity in these sectors. We found that other policies, such as legal acknowledgment, reimbursement, and funding platforms and research, do not consistently coincide with NP/PA training and employment trends. The ratios of NPs and PAs to medical doctors increased substantially in all healthcare sectors from 3.5 and 1.0 per 100 full-time equivalents in medical doctors in 2012 to 11.0 and 3.9 in 2022, respectively. For NPs, the ratios vary between 2.5 per 100 full-time equivalents in medical doctors in primary care and 41.9 in mental healthcare. PA-medical doctor ratios range from 1.6 per 100 full-time equivalents in medical doctors in primary care to 5.8 in hospital care. Conclusions This study reveals that specific policies coincided with NP and PA workforce growth. Sudden and severe fiscal austerity coincided with declining NP/PA training intake. Furthermore, governmental training subsidies coincided and were likely associated with NP/PA workforce growth. Other policy measures did not consistently coincide with trends in intake in NP/PA training or employment. The role of extending the scope of practice remains to be determined. The skill mix is shifting toward an increasing share of medical care provided by NPs and PAs in all healthcare sectors

    The Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa field campaign: Overview and research highlights

    Get PDF
    International audienceUnprecedented ground-based and aircraft measurements in June-July 2016 in southern West Africa characterize atmospheric composition and dynamics, low-level cloud properties, the diurnal cycle, and air pollution impacts on health.The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) investigates the relationship between weather, climate, and air pollution in southern West Africa, an area with rapid population growth, urbanisation, and increase in anthropogenic aerosol emissions. The air over this region contains a unique mixture of natural and anthropogenic gases, liquid droplets and particles, emitted in an environment, in which multi-layer clouds frequently form. These exert a large influence on the local weather and climate, mainly due to their impact on radiation, the surface energy balance, and thus the diurnal cycle of the atmospheric boundary layer.In June and July 2016, DACCIWA organized a major international field campaign in Ivory Coast, Ghana, Togo, Benin, and Nigeria. Three supersites in Kumasi, SavĂš, and Ile-Ife conducted permanent measurements and 15 Intensive observation periods. Three European aircraft together flew 50 research flights between 27 June and 16 July 2016 for a total of 155 hours. DACCIWA scientists launched weather balloons several times a day across the region (772 in total), measured urban emissions, and evaluated health data. The main objective was to build robust statistics of atmospheric composition, dynamics, and low-level cloud properties in various chemical landscapes to investigate their mutual interactions.This article presents an overview of the DACCIWA field campaign activities as well as some first research highlights. The rich data obtained during the campaign will be made available to the scientific community and help to advance scientific understanding, modeling, and monitoring the atmosphere over southern West Africa
    corecore