80 research outputs found

    Creating culturally-safe schools for Māori students

    Get PDF
    In order to better understand the present trends in New Zealandā€™s schooling contexts, there is a clarion call for educators to develop sensitivity and sensibility towards the cultural backgrounds and experiences of Māori students. This paper reports on the work of four scholars who share research that has been undertaken in educational settings with high numbers of Māori students, and discusses the importance of creating culturally-safe schools ā€“ places that allow and enable students to be who and what they are. The theoretical frameworks drawn on are based on both a life partnership analogy as well as on a socio-cultural perspective on human development and learning. The Māori worldview presented in this paper is connected to the Treaty of Waitangi, The Educultural Wheel and the Hikairo Rationale. Data were collected from two ethnographic case studies and analysed through these frameworks. Practical suggestions are then made for using restorative practices and creating reciprocal relationships in classrooms within an environment of care. The paper reports on an evidence-based approach to creating culturally-safe schools for Māori students

    Effect of irradiation on Akt signaling in atrophying skeletal muscle

    Get PDF
    Muscle irradiation (IRR) exposure can accompany unloading during spaceflight or cancer treatment, and this has been shown to be sufficient by itself to induce skeletal muscle signaling associated with a remodeling response. Although protein kinase B/Akt has an established role in the regulation of muscle growth and metabolism, there is a limited understanding of how Akt signaling in unloaded skeletal muscle is affected by IRR. Therefore, we examined the combined effects of acute IRR and short-term unloading on muscle Akt signaling. Female C57BL/6 mice were subjected to load bearing or hindlimb suspension (HS) for 5 days (n = 6/group). A single, unilateral hindlimb IRR dose (0.5 Gy X-ray) was administered on day 3. Gastrocnemius muscle protein expression was examined. HS resulted in decreased AktT308 phosphorylation, whereas HS+IRR resulted in increased AktT308 phosphorylation above baseline. HS resulted in reduced AktS473 phosphorylation, which was rescued by HS+IRR. Interestingly, IRR alone resulted in increased phosphorylation of AktS473, but not that of AktT308. HS resulted in decreased mTORC1 signaling, and this suppression was not altered by IRR. Both IRR and HS resulted in increased MuRF-1 expression, whereas atrogin-1 expression was not affected by either condition. These results demonstrate that either IRR alone or when combined with HS can differentially affect Akt phosphorylation, but IRR did not disrupt suppressed mTORC1 signaling by HS. Collectively, these findings highlight that a single IRR dose is sufficient to disrupt the regulation of Akt signaling in atrophying skeletal muscle

    IL-6 receptor antagonist as adjunctive therapy with clotting factor replacement to protect against bleeding-induced arthropathy in hemophilia

    Get PDF
    The major morbidity of hemophilia is bleeding induced hemophilic arthropathy (HA) which once established may not be interrupted completely even by prophylactic clotting factor replacement. Specific therapies to oppose inflammatory cytokines, including Interleukin 6 (IL-6) receptor antagonists, have become important in the management of inflammatory arthritides

    Microgravity control of autophagy modulates osteoclastogenesis

    Get PDF
    Evidence indicates that astronauts experience significant bone loss during space mission. Recently, we used the NASA developed rotary cell culture system (RCCS) to simulate microgravity (Ī¼Xg) conditions and demonstrated increased osteoclastogenesis in mouse bone marrow cultures. Autophagy is a cellular recycling process of nutrients. Therefore, we hypothesize that Ī¼Xg control of autophagy modulates osteoclastogenesis. Real-time PCR analysis of total RNA isolated from mouse bone marrow derived non-adherent cells subjected to modeled Ī¼Xg showed a significant increase in autophagic marker Atg5, LC3 and Atg16L mRNA expression compared to ground based control (Xg) cultures. Western blot analysis of total cell lysates identified an 8.0-fold and 7.0-fold increase in the Atg5 and LC3-II expression, respectively. Confocal microscopy demonstrated an increased autophagosome formation in Ī¼Xg subjected RAW 264.7 preosteoclast cells. RT2 profiler PCR array screening for autophagy related genes identified that Ī¼Xg upregulates intracellular signaling molecules associated with autophagy, autophagosome components and inflammatory cytokines/growth factors which coregulate autophagy in RAW 264.7 preosteoclast cells. Autophagy inhibitor, 3-methyladenine (3-MA) treatment of mouse bone marrow derived non-adherent mononuclear cells showed a significant decrease in Ī¼Xg induced Atg5 and LC3 mRNA expression in the presence or absence of RANK ligand (RANKL) stimulation. Furthermore, RANKL treatment significantly increased (8-fold) p-CREB transcription factor levels under Ī¼Xg as compared to Xg cultures and 3-MA inhibited RANKL increased p-CREB expression in these cells. Also, 3-MA suppresses Ī¼Xg elevated osteoclast differentiation in mouse bone marrow cultures. Thus, our results suggest that Ī¼Xg induced autophagy plays an important role in enhanced osteoclast differentiation and could be a potential therapeutic target to prevent bone loss in astronauts during space flight missions

    The effect of radiation dose on mouse skeletal muscle remodeling

    Get PDF
    BackgroundThe purpose of this study was to determine the effect of two clinically relevant radiation doses on the susceptibility of mouse skeletal muscle to remodeling.Materials and methods.Alterations in muscle morphology and regulatory signaling were examined in tibialis anterior and gastrocnemius muscles after radiation doses that differed in total biological effective dose (BED). Female C57BL/6 (8-wk) mice were randomly assigned to non-irradiated control, four fractionated doses of 4 Gy (4x4 Gy; BED 37 Gy), or a single 16 Gy dose (16 Gy; BED 100 Gy). Mice were sacrificed 2 weeks after the initial radiation exposure.ResultsThe 16 Gy, but not 4x4 Gy, decreased total muscle protein and RNA content. Related to muscle regeneration, both 16 Gy and 4x4 Gy increased the incidence of central nuclei containing myofibers, but only 16 Gy increased the extracellular matrix volume. However, only 4x4 Gy increased muscle 4-hydroxynonenal expression. While both 16 Gy and 4x4 Gy decreased IIB myofiber mean cross-sectional area (CSA), only 16 Gy decreased IIA myofiber CSA. 16 Gy increased the incidence of small diameter IIA and IIB myofibers, while 4x4 Gy only increased the incidence of small diameter IIB myofibers. Both treatments decreased the frequency and CSA of low succinate dehydrogenase activity (SDH) fibers. Only 16 Gy increased the incidence of small diameter myofibers having high SDH activity. Neither treatment altered muscle signaling related to protein turnover or oxidative metabolism.ConclusionsCollectively, these results demonstrate that radiation dose differentially affects muscle remodeling, and these effects appear to be related to fiber type and oxidative metabolism

    Single-Limb Irradiation Induces Local and Systemic Bone Loss in a Murine Model

    Get PDF
    Increased fracture risk is commonly reported in cancer patients receiving radiotherapy, particularly at sites within the field of treatment. The direct and systemic effects of ionizing radiation on bone at a therapeutic dose are not well-characterized in clinically relevant animal models. Using 20-week-old male C57Bl/6 mice, effects of irradiation (right hindlimb; 2 Gy) on bone volume and microarchitecture were evaluated prospectively by microcomputed tomography and histomorphometry and compared to contralateral-shielded bone (left hindlimb) and non-irradiated control bone. One week postirradiation, trabecular bone volume declined in irradiated tibias (-22%; pā€‰<ā€‰0.0001) and femurs (-14%; pā€‰=ā€‰0.0586) and microarchitectural parameters were compromised. Trabecular bone volume declined in contralateral tibias (-17%; pā€‰=ā€‰0.003), and no loss was detected at the femur. Osteoclast number, apoptotic osteocyte number, and marrow adiposity were increased in irradiated bone relative to contralateral and non-irradiated bone, whereas osteoblast number was unchanged. Despite no change in osteoblast number 1 week postirradiation, dynamic bone formation indices revealed a reduction in mineralized bone surface and a concomitant increase in unmineralized osteoid surface area in irradiated bone relative to contralateral and non-irradiated control bone. Further, dose-dependent and time-dependent calvarial culture and in vitro assays confirmed that calvarial osteoblasts and osteoblast-like MC3T3 cells were relatively radioresistant, whereas calvarial osteocyte and osteocyte-like MLO-Y4 cell apoptosis was induced as early as 48 hours postirradiation (4 Gy). In osteoclastogenesis assays, radiation exposure (8 Gy) stimulated murine macrophage RAW264.7 cell differentiation, and coculture of irradiated RAW264.7 cells with MLO-Y4 or murine bone marrow cells enhanced this effect. These studies highlight the multifaceted nature of radiation-induced bone loss by demonstrating direct and systemic effects on bone and its many cell types using clinically relevant doses; they have important implications for bone health in patients treated with radiation therapy

    Protein kinetics of superoxide dismutase-1 in familial and sporadic amyotrophic lateral sclerosis

    Get PDF
    OBJECTIVE: Accumulation of misfolded superoxide dismutase-1 (SOD1) is a pathological hallmark of SOD1-related amyotrophic lateral sclerosis (ALS) and is observed in sporadic ALS where its role in pathogenesis is controversial. Understanding in vivo protein kinetics may clarify how SOD1 influences neurodegeneration and inform optimal dosing for therapies that lower SOD1 transcripts. METHODS: We employed stable isotope labeling paired with mass spectrometry to evaluate in vivo protein kinetics and concentration of soluble SOD1 in cerebrospinal fluid (CSF) of SOD1 mutation carriers, sporadic ALS participants and controls. A deaminated SOD1 peptide, SDGPVKV, that correlates with protein stability was also measured. RESULTS: In participants with heterozygous SOD1 INTERPRETATION: These results highlight the ability of stable isotope labeling approaches and peptide deamidation to discern the influence of disease mutations on protein kinetics and stability and support implementation of this method to optimize clinical trial design of gene and molecular therapies for neurological disorders. TRIAL REGISTRATION: Clinicaltrials.gov: NCT03449212

    Effect of proton irradiation followed by hindlimb unloading on bone in mature mice: A model of long-duration spaceflight

    Get PDF
    Bone loss associated with microgravity unloading is well documented; however, the effects of spaceflight-relevant types and doses of radiation on the skeletal system are not well defined. In addition, the combined effect of unloading and radiation has not received much attention. In the present study, we investigated the effect of proton irradiation followed by mechanical unloading via hindlimb suspension (HLS) in mice. Sixteen-week-old female C57BL/6 mice were either exposed to 1 Gy of protons or a sham irradiation procedure (n=30/group). One day later, half of the mice in each group were subjected to four weeks of HLS or normal loading conditions. Radiation treatment alone (IRR) resulted in approximately 20% loss of trabecular bone volume fraction (BV/TV) in the tibia and femur, with no effect in the cortical bone compartment. Conversely, unloading induced substantially greater loss of both trabecular bone (60ā€“70% loss of BV/TV) and cortical bone (approximately 20% loss of cortical bone volume) in both the tibia and femur, with corresponding decreases in cortical bone strength. Histological analyses and serum chemistry data demonstrated increased levels of osteoclast-mediated bone resorption in unloaded mice, but not IRR. HLS+IRR mice generally experienced greater loss of trabecular bone volume fraction, connectivity density, and trabecular number than either unloading or irradiation alone. Although the duration of unloading may have masked certain effects, the skeletal response to irradiation and unloading appears to be additive for certain parameters. Appropriate modeling of the environmental challenges of long duration spaceflight will allow for a better understanding of the underlying mechanisms mediating spaceflight-associated bone loss and for the development of effective countermeasures

    Changes in Mouse Thymus and Spleen after Return from the STS-135 Mission in Space

    Get PDF
    Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancerā€“related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASAā€™s Space Shuttle Program, exploration of space will undoubtedly continue
    • ā€¦
    corecore