26 research outputs found

    Cediranib combined with carboplatin and paclitaxel in patients with metastatic or recurrent cervical cancer (CIRCCa): a randomised, double-blind, placebo-controlled phase 2 trial

    Get PDF
    Background: Patients treated with standard chemotherapy for metastatic or relapsed cervical cancer respond poorly to conventional chemotherapy (response achieved in 20–30% of patients) with an overall survival of less than 1 year. High tumour angiogenesis and high concentrations of intratumoural VEGF are adverse prognostic features. Cediranib is a potent tyrosine kinase inhibitor of VEGFR1, 2, and 3. In this trial, we aimed to assess the effect of the addition of cediranib to carboplatin and paclitaxel chemotherapy in patients with metastatic or recurrent cervical cancer. Methods: In this randomised, double-blind, placebo-controlled phase 2 trial, which was done in 17 UK cancer treatment centres, patients aged 18 years or older initially diagnosed with metastatic carcinoma or who subsequently developed metastatic disease or local pelvic recurrence after radical treatment that was not amenable to exenterative surgery were recruited. Eligible patients received carboplatin AUC of 5 plus paclitaxel 175 mg/m2 by infusion every 3 weeks for a maximum of six cycles and were randomised centrally (1:1) through a minimisation approach to receive cediranib 20 mg or placebo orally once daily until disease progression. The stratification factors were disease site, disease-free survival after primary therapy or primary stage IVb disease, number of lines of previous treatment, Eastern Cooperative Oncology Group performance status, and investigational site. All patients, investigators, and trial personnel were masked to study drug allocation. The primary endpoint was progression-free survival. Efficacy analysis was by intention to treat, and the safety analysis included all patients who received at least one dose of study drug. This trial is registered with the ISCRTN registry, number ISRCTN23516549, and has been completed. Findings: Between Aug 19, 2010, and July 27, 2012, 69 patients were enrolled and randomly assigned to cediranib (n=34) or placebo (n=35). After a median follow-up of 24·2 months (IQR 21·9–29·5), progression-free survival was longer in the cediranib group (median 8·1 months [80% CI 7·4–8·8]) than in the placebo group (6·7 months [6·2–7·2]), with a hazard ratio (HR) of 0·58 (80% CI 0·40–0·85; one-sided p=0·032). Grade 3 or worse adverse events that occurred in the concurrent chemotherapy and trial drug period in more than 10% of patients were diarrhoea (five [16%] of 32 patients in the cediranib group vs one [3%] of 35 patients in the placebo group), fatigue (four [13%] vs two [6%]), leucopenia (five [16%] vs three [9%]), neutropenia (10 [31%] vs four [11%]), and febrile neutropenia (five [16%] vs none). The incidence of grade 2–3 hypertension was higher in the cediranib group than in the control group (11 [34%] vs four [11%]). Serious adverse events occurred in 18 patients in the placebo group and 19 patients in the cediranib group. Interpretation: Cediranib has significant efficacy when added to carboplatin and paclitaxel in the treatment of metastatic or recurrent cervical cancer. This finding was accompanied by an increase in toxic effects (mainly diarrhoea, hypertension, and febrile neutropenia)

    Development of a 50 W porous emitter electrospray thruster towards flight

    No full text
    A low power porous electrospray propulsion system (PET-50)has been developed and tested at the University of Southampton in collaboration with RHP Technology Austria and AVS UK.The thruster utilizes a 313-emitter array, a molybdenum extractor plate and stainless-steel porous reservoir, also working as distal electrode. The performance of the thruster has been characterized using electrical diagnostics, plume diagnostics, Time-of-Flight (ToF) mass spectrometry and direct thrust measurements. PET-50 demonstrated high beam current after onset, with maximum values of around +1.5/-1.5 mA at 3400 V. Assuming a 50 % monomer-dimer mix, the estimated thrust and specific impulse is ~180 μN and~5800 s with an input power of 5.5 W. The measured thrust time response depicted increase in thrust with increasing voltage, reaching ~175 μN at 5.5 W, in excellent agreement with that estimated solely from electrical measurements. Four thruster units operating together will produce a total thrust of ~0.7 mN consuming only ~22 W with thrust to power ratio of ~32 μN/W

    A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE)

    No full text

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems that facilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment.This document describes the conceptual design for the Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE). The goals of the experiment include 1) studying neutrino oscillations using a beam of neutrinos sent from Fermilab in Illinois to the Sanford Underground Research Facility (SURF) in Lead, South Dakota, 2) studying astrophysical neutrino sources and rare processes and 3) understanding the physics of neutrino interactions in matter. We describe the development of the computing infrastructure needed to achieve the physics goals of the experiment by storing, cataloging, reconstructing, simulating, and analyzing \sim 30 PB of data/year from DUNE and its prototypes. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions and advanced algorithms as HEP computing evolves. We describe the physics objectives, organization, use cases, and proposed technical solutions

    DUNE Offline Computing Conceptual Design Report

    No full text
    This document describes Offline Software and Computing for the Deep Underground Neutrino Experiment (DUNE) experiment, in particular, the conceptual design of the offline computing needed to accomplish its physics goals. Our emphasis in this document is the development of the computing infrastructure needed to acquire, catalog, reconstruct, simulate and analyze the data from the DUNE experiment and its prototypes. In this effort, we concentrate on developing the tools and systems thatfacilitate the development and deployment of advanced algorithms. Rather than prescribing particular algorithms, our goal is to provide resources that are flexible and accessible enough to support creative software solutions as HEP computing evolves and to provide computing that achieves the physics goals of the DUNE experiment

    Reconstruction of interactions in the ProtoDUNE-SP detector with Pandora

    No full text
    International audienceThe Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/cc charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1±0.6\pm0.6% and 84.1±0.6\pm0.6%, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    No full text
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6 ×\times  6 ×\times  6 m3^3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019–2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties.DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6x6x6m3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    No full text
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10310^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    The DUNE Far Detector Vertical Drift Technology, Technical Design Report

    No full text
    International audienceDUNE is an international experiment dedicated to addressing some of the questions at the forefront of particle physics and astrophysics, including the mystifying preponderance of matter over antimatter in the early universe. The dual-site experiment will employ an intense neutrino beam focused on a near and a far detector as it aims to determine the neutrino mass hierarchy and to make high-precision measurements of the PMNS matrix parameters, including the CP-violating phase. It will also stand ready to observe supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector implements liquid argon time-projection chamber (LArTPC) technology, and combines the many tens-of-kiloton fiducial mass necessary for rare event searches with the sub-centimeter spatial resolution required to image those events with high precision. The addition of a photon detection system enhances physics capabilities for all DUNE physics drivers and opens prospects for further physics explorations. Given its size, the far detector will be implemented as a set of modules, with LArTPC designs that differ from one another as newer technologies arise. In the vertical drift LArTPC design, a horizontal cathode bisects the detector, creating two stacked drift volumes in which ionization charges drift towards anodes at either the top or bottom. The anodes are composed of perforated PCB layers with conductive strips, enabling reconstruction in 3D. Light-trap-style photon detection modules are placed both on the cryostat's side walls and on the central cathode where they are optically powered. This Technical Design Report describes in detail the technical implementations of each subsystem of this LArTPC that, together with the other far detector modules and the near detector, will enable DUNE to achieve its physics goals
    corecore