6,111 research outputs found

    The Maximum Mass of Star Clusters

    Get PDF
    When an universal untruncated star cluster initial mass function (CIMF) described by a power-law distribution is assumed, the mass of the most massive star cluster in a galaxy (M_max) is the result of the size-of-sample (SoS) effect. This implies a dependence of M_max on the total number of star clusters (N). The SoS effect also implies that M_max within a cluster population increases with equal logarithmic intervals of age. This is because the number of clusters formed in logarithmic age intervals increases (assuming a constant cluster formation rate). This effect has been observed in the SMC and LMC. Based on the maximum pressure (P_int) inside molecular clouds, it has been suggested that a physical maximum mass (M_max[phys]) should exist. The theory predicts that M_max[phys] should be observable, i.e. lower than M_max that follows from statistical arguments, in big galaxies with a high star formation rate. We compare the SoS relations in the SMC and LMC with the ones in M51 and model the integrated cluster luminosity function (CLF) for two cases: 1) M_max is determined by the SoS effect and 2) M_max=M_max[phys]=constant. The observed CLF of M51 and the comparison of the SoS relations with the SMC and LMC both suggest that there exists a M_max[phys] of 5*10^5 M_sun in M51. The CLF of M51 looks very similar to the one observed in the ``Antennae'' galaxies. A direct comparison with our model suggests that there M_max[phys]=2*10^6 M_sun.Comment: 4 pages, contribution to "Globular Clusters: Guides to Galaxies", March 6th-10th, 200

    Globular Cluster Mass Loss in the Context of Multiple Populations

    Get PDF
    Many scenarios for the origin of the chemical anomalies observed in globular clusters (GCs; i.e., multiple populations) require that GCs were much more massive at birth, up to 10−100×10-100\times, than they are presently. This is invoked in order to have enough material processed through first generation stars in order to form the observed numbers of enriched stars (inferred to be second generation stars in these models). If such mass loss was due to tidal stripping, gas expulsion, or tidal interaction with the birth environment, there should be clear correlations between the fraction of enriched stars and other cluster properties, whereas the observations show a remarkably uniform enriched fraction of 0.68±0.070.68\pm0.07 (from 33 observed GCs). If interpreted in the heavy mass loss paradigm, this means that all GCs lost the same fraction of their initial mass (between 95−9895-98\%), regardless of their mass, metallicity, location at birth or subsequent migration, or epoch of formation. This is incompatible with predictions, hence we suggest that GCs were not significantly more massive at birth, and that the fraction of enriched to primordial stars observed in clusters today likely reflects their initial value. If true, this would rule out self-enrichment through nucleosynthesis as a viable solution to the multiple population phenomenon

    Higgs-Yukawa model on the lattice

    Full text link
    We present results from two projects on lattice calculations for the Higgs-Yukawa model. First we report progress on the search of first-order thermal phase transitions in the presence of a dimension-six operator, with the choices of bare couplings that lead to viable phenomenological predictions. In this project the simulations are performed using overlap fermions to implement the required chiral symmetry. Secondly, our study for applying finite-size scaling techniques near the Gaussian fixed point of the Higgs-Yukawa model is presented. We discuss the analytical formulae for the Higgs Yukawa model and show results for a first numerical study in the pure O(4)O(4) scalar sector of the theory.Comment: 8 pages, 4 figures; Contribution to the proceedings of the 35th International Symposium on Lattice Field Theory, 18 - 24 June 2017, Granada, Spai

    A lattice study of a chirally invariant Higgs-Yukawa model including a higher dimensional Φ6\Phi^6-term

    Get PDF
    We discuss the non-thermal phase structure of a chirally invariant Higgs-Yukawa model on the lattice in the presence of a higher dimensional Φ6\Phi^6-term. For the exploration of the phase diagram we use analytical, lattice perturbative calculations of the constraint effectice potential as well as numerical simulations. We also present first results of the effects of the Φ6\Phi^6-term on the lower Higgs boson mass bounds

    Working memory training in older adults: Bayesian evidence supporting the absence of transfer

    Get PDF
    The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65-80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age

    Early leaf removal increases flower abscission in Vitis vinifera ‘Semillon’

    Get PDF
    Leaf removal was applied to Semillon vines in two different vineyards at different growth stages. Percentage fruit set and yield were reduced by leaf removal treatments. The magnitude of the reduction in yield was due to a decrease in bunch weight which was largely due to an increase in flower abscission and possibly the proportion of seedless berries and LGOs. The greatest reduction in yield was achieved when leaf removal was applied before and at the start of flowering.

    Isochrone-cloud fitting of the extended main-sequence turn-off of young clusters

    Get PDF
    Context. Extended main-sequence turn-offs (eMSTOs) are a commonly observed property of young clusters. A global theoretical interpretation for eMSTOs is still lacking, but stellar rotation is considered a necessary ingredient to explain eMSTOs. Aims. We aim to assess the importance of core-boundary and envelope mixing in stellar interiors for the interpretation of eMSTOs in terms of one coeval population. Methods. We constructed isochrone-clouds based on interior mixing profiles of stars with a convective core calibrated from asteroseismology of isolated galactic field stars. We fitted these isochrone-clouds to the measured eMSTO to estimate the age and core mass of the stars in the two young clusters NGC 1850 and NGC 884, assuming one coeval population and by fixing the metallicity to the one measured from spectroscopy. We assessed the correlations between the interior mixing properties of the cluster members and their rotational and pulsational properties. Results. We find that stellar models based on asteroseismically-calibrated interior mixing profiles lead to enhanced core masses of eMSTO stars. Additionally, these models can explain a significant fraction of the observed eMSTOs of the two considered clusters in terms of one coeval population of stars, which have similar ages to those in the literature, given the large uncertainties. The rotational and pulsational properties of the stars in NGC 884 are not sufficiently well known to perform asteroseismic modelling as it is achieved for field stars from space photometry. The stars in NGC 884 for which we have v sin i and a few pulsation frequencies show no correlation between these properties and the core masses of the stars that set the cluster age. Conclusions. Future cluster space asteroseismology may allow for the interpretation of the core masses in terms of the physical processes that cause them, based on the modelling of the interior mixing profiles for the individual member stars with suitable identified modes
    • …
    corecore