19 research outputs found

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Livestock Management on Grazing Field: A FANET Based Approach

    No full text
    In recent times, designated grazing areas/fields or routes for livestock grazing are usually defined. Hence, their herding activities’ success relies on data extracted from aerial photographs. As such, a direct and cost-effective way of monitoring livestock for perimeter coverage and in other natural situations is required. This paper presents a coverage solution involving multiple interacting unmanned aerial vehicles. The presented approach is built on a graph, with geographic coordinates set such that several Unmanned Aerial Vehicles (UAVs) can successfully cover the area. The maximum flying time determines the number of UAVs employed for coverage. The proposed solution is thought to solve some practical problems encountered during the execution of the task with actual UAVs. It is suitable for long-term monitoring of animal behavior under various weather conditions and observing the relationship between livestock distribution and available resources on a grazing field. The simulation was carried out using MATLAB and aerial images from Google Earth

    Livestock Management on Grazing Field: A FANET Based Approach

    No full text
    In recent times, designated grazing areas/fields or routes for livestock grazing are usually defined. Hence, their herding activities’ success relies on data extracted from aerial photographs. As such, a direct and cost-effective way of monitoring livestock for perimeter coverage and in other natural situations is required. This paper presents a coverage solution involving multiple interacting unmanned aerial vehicles. The presented approach is built on a graph, with geographic coordinates set such that several Unmanned Aerial Vehicles (UAVs) can successfully cover the area. The maximum flying time determines the number of UAVs employed for coverage. The proposed solution is thought to solve some practical problems encountered during the execution of the task with actual UAVs. It is suitable for long-term monitoring of animal behavior under various weather conditions and observing the relationship between livestock distribution and available resources on a grazing field. The simulation was carried out using MATLAB and aerial images from Google Earth

    SIFT-CNN Pipeline in Livestock Management: A Drone Image Stitching Algorithm

    No full text
    Images taken by drones often must be preprocessed and stitched together due to the inherent noise, narrow imaging breadth, flying height, and angle of view. Conventional UAV feature-based image stitching techniques significantly rely on the quality of feature identification, made possible by image pixels, which frequently fail to stitch together images with few features or low resolution. Furthermore, later approaches were developed to eliminate the issues with conventional methods by using the deep learning-based stitching technique to collect the general attributes of remote sensing images before they were stitched. However, since the images have empty backgrounds classified as stitched points, it is challenging to distinguish livestock in a grazing area. Consequently, less information can be inferred from the surveillance data. This study provides a four-stage object-based image stitching technique that, before stitching, removes the background’s space and classifies images in the grazing field. In the first stage, the drone-based image sequence of the livestock on the grazing field is preprocessed. In the second stage, the images of the cattle on the grazing field are classified to eliminate the empty spaces or backgrounds. The third stage uses the improved SIFT to detect the feature points of the classified images to o8btain the feature point descriptor. Lastly, the stitching area is computed using the image projection transformation

    Energy-aware message distribution algorithm for enhance FANET pipeline surveillance reliability

    No full text
    Features such as the communication scheme, energy awareness, and task distribution amongst others are the key component that characterizes the Flying Ad-hoc Network (FANET). The operational efficiency in FANET surveying a specific region is affected by the nature of the UAVs' node placement, routing protocol, energy-aware task distribution, and node interaction amongst others. In this paper, Drone 1 (D1), Master Drone (DM), and Drone 2 (D2) were used to survey a pipeline of length 12.2 m. This paper aims at minimising energy use by drones during surveillance using energy-aware node exchange technique, task interaction and distribution scheme for each UAV. Due to fast energy depletion of DM due to packets aggregation, its election is based on the UAV with the highest energy before take-off. For two different simulations, 14,697.0 J and 14,836.6 J were obtained for DM. To avoid system failure due to fast energy loss of DM, the drones swapped positions and status. First swapping command comes up when DM loses 50% of its energy, while the second command occurs when it further loses 15%. Return to base threshold energy is computed for the three UAVs to avoid crash due to insufficient energy during surveillance. DM returns to base threshold energy for both single and double swapping simulation were 658.105 J and 652.456 J respectively. From the results obtained the algorithms were able to exchange nodes to maximize energy usage and perform an interaction-based task distribution for cooperative task sharing during surveillance. This translates into longer surveillance time and effective telemetry data aggregation

    Thermo-migration behavior of SAC305 lead-free solder reinforced with fullerene nanoparticles

    No full text
    This paper is in closed access.In this work, SAC305 lead-free solder reinforced with 0.1 wt. % fullerene nanoparticles was prepared using a powder metallurgy method. A lab-made setup and a corresponding Cu/solder/Cu sample for thermo-migration (TM) test were designed and implemented. The feasibility of this setup for TM stressing was further verified with experimental and simulation methods; a temperature gradient in a solder seam was calculated as 1070 K/cm. Microstructural evolution and mechanical properties of both plain and composite solder alloys were then studied under the condition of TM stressing. It was shown that compared to unreinforced SAC305 solder, the process of diffusion of Cu atoms in the composite solder seam was remarkably suppressed. After the TM test for 600 h, Cu/solder interfaces in the composite solder seam were more stable and the inner structure remained more intact. Moreover, the addition of fullerene reinforcement can considerably affect a distribution of Cu6Sn5 formed as a result of dissolution of Cu atoms during the TM test. Hardness data across the solder seam were also found notably different because of the elemental redistribution caused by TM

    Age and frailty are independently associated with increased COVID-19 mortality and increased care needs in survivors: Results of an international multi-centre study

    No full text

    The incidence and significance of anti-natalizumab antibodies: Results from AFFIRM and SENTINEL

    No full text
    corecore