8 research outputs found

    Abundancia, composición e infección natural de mosquitos Anopheles en dos regiones endémicas para malaria en Colombia

    Get PDF
    Introduction: In Colombia there are three Anopheles species implicated in malaria transmission as primary vectors; however, the local role of some Anopheles species must still be defined.Objective: To determine the abundance, composition and natural infection rates for Anopheles mosquitoes with Plasmodium spp. in two malaria-endemic regions of Colombia.Materials and methods: Anopheles mosquitoes were collected using the human-landing catches and while resting in livestock corrals in nine localities of two malaria-endemic regions of Colombia. Mosquitoes were morphologically identified and confirmed by PCR-RFLP-ITS2. Identified mosquitoes were processed and tested for Plasmodium parasite infection by ELISA and ssrRNA-based nested PCR.Results: We collected 1,963 Anopheles mosquitoes corresponding to nine species. The most abundant species were Anopheles nuneztovari (53.5%) and A. darlingi (34.5%), followed by A. triannulatus s.l. (6%), and other species (≈5.9%). Three species were naturally infected with Plasmodium spp.: A. darlingi, A. nuneztovari and A. triannulatus s.l.Conclusions: Natural infection of A. darlingi and A. nuneztovari indicate that these malaria vectors continue to be effective carriers of Plasmodium in the localities under study in Valle del Cauca and Chocó. Additionally, the infected A. triannulatus s.l. collected in livestock corrals in the locality of the department of Córdoba suggests the need for further studies to define the epidemiological importance of this species given its abundance and opportunistic anthropophilic behavior.Introducción. En Colombia hay tres especies de mosquitos Anopheles implicadas como vectores primarios en la transmisión de la malaria o paludismo; sin embargo, el rol local de algunas especies de Anopheles aún debe determinarse.Objetivo. Determinar la abundancia, la composición y la infección natural de mosquitos anofelinos con Plasmodium spp. en dos regiones endémicas de malaria en Colombia.Materiales y métodos. Se recolectaron mosquitos del género Anopheles usando los métodos de recolección con cebo humano y en reposo en corrales de ganado vacuno, en nueve localidades de dos regiones endémicas para malaria en Colombia. Los especímenes se identificaron morfológicamente y se confirmaron por reacción en cadena de la polimerasa (PCR) de los polimorfismos en la longitud de los fragmentos de restricción (Restriction Fragment Length Polymorphism, RFLP) en el espaciador intergénico ribosómico nuclear 2 (Internal Transcribed Spacer, ITS-2) (PCR-RFLP-ITS2). Los especímenes se procesaron y analizaron mediante ELISA y PCR anidada basada en la subunidad pequeña del ARN ribosómico (small subunit ribosomal RNA, ssrRNA) para determinar la infección por Plasmodium.Resultados. Se recolectaron 1.963 mosquitos Anopheles correspondientes a nueve especies. Anopheles nuneztovari fue la especie predominante (53,5 %), seguida por A. darlingi (34,5 %), A. triannulatus s.l. (6 %) y por otras especies (≈5,9 %). Tres especies se encontraron naturalmente infectadas con Plasmodium spp.: A. darlingi, A. nuneztovari y A. triannulatus s.l.Conclusiones. La infección natural de A. darlingi y A. nuneztovari indica que estos vectores primarios siguen siendo actores principales en la transmisión de malaria en las localidades estudiadas de los departamentos del Valle del Cauca y Chocó. Además, el espécimen A. triannulatus s.l. infectado, recolectado en corrales de animales de la localidad estudiada en el departamento de Córdoba, indica que existe la necesidad de estudios futuros para establecer la importancia epidemiológica de esta especie dada su abundancia y comportamiento antropofílico oportunista

    Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology

    Get PDF
    Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species

    Abundance, composition and natural infection of Anopheles mosquitoes from two malaria-endemic regions of Colombia

    No full text
    Introduction: In Colombia there are three Anopheles species implicated in malaria transmission as primary vectors; however, the local role of some Anopheles species must still be defined. Objective: To determine the abundance, composition and natural infection rates for Anopheles mosquitoes with Plasmodium spp. in two malaria-endemic regions of Colombia. Materials and methods: Anopheles mosquitoes were collected using the human-landing catches and while resting in livestock corrals in nine localities of two malaria-endemic regions of Colombia. Mosquitoes were morphologically identified and confirmed by PCR-RFLP-ITS2. Identified mosquitoes were processed and tested for Plasmodium parasite infection by ELISA and ssrRNA-based nested PCR. Results: We collected 1,963 Anopheles mosquitoes corresponding to nine species. The most abundant species were Anopheles nuneztovari (53.5%) and A. darlingi (34.5%), followed by A. triannulatus s.l. (6%), and other species (≈5.9%). Three species were naturally infected with Plasmodium spp.: A. darlingi, A. nuneztovari and A. triannulatus s.l. Conclusions: Natural infection of A. darlingi and A. nuneztovari indicate that these malaria vectors continue to be effective carriers of Plasmodium in the localities under study in Valle del Cauca and Chocó. Additionally, the infected A. triannulatus s.l. collected in livestock corrals in the locality of the department of Córdoba suggests the need for further studies to define the epidemiological importance of this species given its abundance and opportunistic anthropophilic behavior

    Composition and structure of the culturable gut bacterial communities in Anopheles albimanus from Colombia.

    No full text
    The understanding of factors affecting the gut bacterial communities in malaria vectors is essential for the design of vector control interventions, such as those based on a paratransgenic approach. One of the requirements of this method is the availability of bacteria from the mosquito susceptible to culture. Thus, the aim of this study was to evaluate the composition and structure of the culturable gut bacterial communities in field mosquitoes Anopheles albimanus from Colombia, in addition to generate a bacterial collection to further analyze microbial functional activity. Gut bacteria were isolated from An. albimanus larvae and adult mosquitoes collected in localities of the Atlantic and Pacific Coasts. The bacterial isolates were grouped in 28 morphospecies that corresponded to three phyla, three classes, nine families and 14 genera. The larvae guts from San Antero (Atlantic Coast) and Buenaventura (Pacific Coast) shared the genera Bacillus and Lysinibacillus and in adults, Bacillus and Bacillus cereus Group were registered in both localities. Gut bacterial richness was higher in adults from the Pacific with respect to the Atlantic Coast, while larval richness was similar in samples of both coasts. The Shannon index indicated uniformity in morphospecies abundances in both localities. Finally, the characterization of morphospecies from the gut of Anopheles albimanus mosquitoes from Colombia by culture-dependent methods complemented with 16S rRNA gene sequencing allowed the definition, at a finer resolution, of the composition and structure of these microbial communities. In addition, the obtained bacterial culture collection will allow further evaluation of the microorganisms for their potential as biocontrol agents

    Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors

    No full text
    Abstract Background The understanding of the roles of gut bacteria in the fitness and vectorial capacity of mosquitoes that transmit malaria, is improving; however, the factors shaping the composition and structure of such bacterial communities remain elusive. In this study, a high-throughput 16S rRNA gene sequencing was conducted to understand the effect of developmental stage, feeding status, species, and geography on the composition of the gut bacterial microbiota of two main Colombian malaria vectors, Anopheles nuneztovari and Anopheles darlingi. Results The results revealed that mosquito developmental stage, followed by geographical location, are more important determinants of the gut bacterial composition than mosquito species or adult feeding status. Further, they showed that mosquito gut is a major filter for environmental bacteria colonization. Conclusions The sampling design and analytical approach of this study allowed to untangle the influence of factors that are simultaneously shaping the microbiota composition of two Latin-American malaria vectors, essential aspect for the design of vector biocontrol strategies

    Trials of the Automated Particle Counter for laboratory rearing of mosquito larvae.

    No full text
    As a means of obtaining reproducible and accurate numbers of larvae for laboratory rearing, we tested a large-particle flow-cytometer type device called the 'Automated Particle Counter' (APC). The APC is a gravity-fed, self-contained unit that detects changes in light intensity caused by larvae passing the detector in a water stream and controls dispensing by stopping the flow when the desired number has been reached. We determined the accuracy (number dispensed compared to the target value) and precision (distribution of number dispensed) of dispensing at a variety of counting sensitivity thresholds and larva throughput rates (larvae per second) using < 1-day old Anopheles gambiae and Aedes aegypti larvae. All measures were made using an APC algorithm called the 'Smoothed Z-Score' which allows the user to define how many standard deviations (Z scores) from the baseline light intensity a particle's absorbance must exceed to register a count. We dispensed a target number of 100 An. gambiae larvae using Z scores from 2.5-8 and observed no difference among them in the numbers dispensed for scores from 2.5-6, however, scores of 7 and 8 under-counted (over-dispensed) larvae. Using a Z score ≤ 6, we determined the effect of throughput rate on the accuracy of the device to dispense An. gambiae larvae. For rates ≤ 98 larvae per second, the accuracy of dispensing a target of 100 larvae was - 2.29% ± 0.72 (95% CI of the mean) with a mode of 99 (49 of 348 samples). When using a Z score of 3.5 and rates ≤ 100 larvae per second, the accuracy of dispensing a target of 100 Ae. aegypti was - 2.43% ± 1.26 (95% CI of the mean) with a mode of 100 (6 of 42 samples). No effect on survival was observed on the number of An. gambiae first stage larvae that reached adulthood as a function of dispensing
    corecore