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Analysis of natural female post-
mating responses of Anopheles 
gambiae and Anopheles coluzzii 
unravels similarities and differences 
in their reproductive ecology
Janis Thailayil1, Paolo Gabrieli2,3,6, Beniamino Caputo4, Priscila Bascuñán2,3,7, Adam South2, 
Abdoulaye Diabate5, Roch Dabire5, Alessandra della Torre4 & Flaminia Catteruccia2

Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are 
recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females 
from these species, sexual transfer of male accessory gland products, including the steroid hormone 
20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that 
profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-
mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional 
changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. 
coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways 
shaping short- and long-term mating-induced changes are largely conserved in females from the 
two species, we unravel significant inter-specific differences that suggest divergent regulation of 
key reproductive processes such as egg development, processing of seminal secretion, and mating 
behavior, that may have played a role in reproductive isolation. Interestingly, a number of these 
changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due 
to divergent utilization of this steroid hormone in the two species.

Although overall malaria mortality rates have significantly declined since 2010 due to increased prevention 
and control measures, Sub-Saharan Africa continues to carry a disproportionately high share of the global 
malaria burden, bearing more than 90% of the 212 million cases and of the estimated 429,000 deaths caused by 
Plasmodium parasites1. One of the main reasons for this higher burden in the African continent is the presence 
of a very efficient mosquito vectorial system, principally represented by the two most recently radiated species 
of the Anopheles gambiae complex, i.e. Anopheles gambiae and An. coluzzii2,3. These species are sympatric in 
West and Central Africa4,5, but differ in their larval ecology, with An. gambiae being more adapted to temporary 
rain-dependent and An. coluzzii to permanent anthropogenic breeding sites6–9. Due to their major role as malaria 
vectors, the two species are the target of several studies aimed at developing novel approaches for the control of 
disease transmission in sub-Saharan Africa, with the view to complement or strengthen current insecticide-based 
control methods10–12.
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One of these novel approaches consists in manipulating the mosquito reproductive success. A recent study 
showed that application of non-steroidal agonists of the steroid hormone 20-hydroxyecdysone (20E) on An. gam-
biae virgin females virtually sterilizes them by preventing their insemination and reducing egg development10. 
This hormone is a potent regulator of gene transcription during both juvenile development and oogenesis in 
adults13,14, and in some anopheline species is synthetized in the male accessory glands (MAGs) and transferred 
during mating to the female atrium together with other seminal secretions embedded in a gelatinous structure 
named the mating plug15–20. Several studies have shown that in species of the Afrotropical An. gambiae complex, 
sexual transfer of 20E is essential for proper induction of female post-mating behaviors, such as refractoriness 
to further mating, enhanced egg production, triggered egg laying and increased fertility17–19,21. In addition, 20E 
injections in the G3 strain, which is a mixture of An. gambiae and An. coluzzii, induce a broad transcriptional 
response in the female reproductive tract, closely overlapping with the vast response induced by mating in the 
same strain, where hundreds of genes are up-and down-regulated at different time points after copulation18,22. 
However, the extent to which the response to mating is conserved between An. gambiae and An. coluzzii females 
is currently unknown.

In Drosophila, multiple lines of evidence point to a role of female post-mating biology in the insurgence of 
post-mating, prezygotic reproductive barriers. For instance, in crosses between recently diverged species, fail-
ure in sperm transfer and/or storage in hetero-specific crosses was attributed to mating-induced changes23,24. 
Additionally, processing of the insemination “plug” that forms in Drosophila females immediately after mat-
ing takes longer in hetero- than in homo-specific crosses25,26. It has also been postulated that fast evolving 
male-female molecular interactions or post-mating changes in transcript abundance may represent signatures of 
natural selection shaping the evolutionary arms race between the sexes27–30.

Post-mating events may have also played a role in the recent divergence between An. gambiae and An. coluzzii. 
While hybrid males from most crosses between species of the An. gambiae complex are sterile, males from crosses 
between An. gambiae and An. coluzzii do not show signatures of genetic incompatibilities and are fully fertile, 
with no obvious loss in fitness under laboratory conditions31. Nevertheless, hybrids between these two species are 
rarely observed in most areas of sympatry5,32. Where the two species are sympatric, e.g. in Burkina Faso, spatial 
and temporal segregation of the swarms is significantly contributing to assortative mating33,34, while close-range 
mate recognition cues, such as species-specific flight tones and/or contact cuticular pheromones, are believed to 
reinforce pre-mating isolation35–41. Inter-specific mating couples have, however, been repeatedly collected in the 
field42,43, suggesting the co-occurrence of intrinsic and/or extrinsic post-mating isolation mechanisms. While the 
latter have been shown to play a role5, intrinsic post-mating isolation mechanisms have never been investigated.

Here we report the first data on the transcriptional changes induced by mating in An. gambiae and An. coluzzii 
females captured in natural mating swarms from Burkina Faso. Our results corroborate previous data obtained 
under laboratory conditions18,22, allow the identification of factors potentially important for mating, fertility and 
reproductive success in each species, and provide novel insights on inter-specific differences that shape their 
reproductive ecology and may help unravel the mechanisms of their reproductive isolation.

Results
Collection of mating couples from natural swarms. In order to analyze the natural post-mating 
response of females from the two anopheline sibling species, we collected 91 An. gambiae and 75 An. coluzzii 
mating couples from different swarms in the villages of Soumousso and Vallèe du Kou (Burkina Faso) (Fig. 1). 
Females of each couple were then dissected at either 1 day or 4 days post mating (PM), to capture the short-term 
as well as the lasting, long-term response to copulation. We dissected the lower reproductive tract (LRT) compris-
ing atrium and spermatheca, and the rest of the body (carcass).

Virgin females were instead produced by collecting larvae from natural breeding sites, and LRTs and carcasses 
were dissected from resulting adult females at 2 and 5 days post emergence. Because the age of mated females 
could not be determined as they were caught in natural mating swarms, we chose these time points for tissue 
collection in virgins to approximately age-match these samples to the ones dissected from mated females, given 
that it is generally believed that females mate on the second night after emergence44.

Post-mating transcriptional response in the lower reproductive tract (LRT) of field An. gambiae  
and An. coluzzii females. In our analysis of the post-mating response in the LRT, we focused on ten genes 
shown to be strongly up- or down-regulated after mating in laboratory experiments and thus likely to be involved 
in the reproductive processes triggered by copulation18,22 (Tables 1, 2; Fig. 2). These included 9 genes whose 
function in An. gambiae has not been determined yet – i.e. one ABC transporter (AGAP011518), three serine 
proteases (AGAP005194, AGAP005195, AGAP005196), one amino protease (AGAP000885), two metallopep-
tidases (AGAP001791 and AGAP009791), a protease inhibitor (AGAP009766), and a putative anti-microbial 
Andropin-like gene (AGAP009429)45. The last gene was the mating induced stimulator of oogenesis (MISO, 
AGAP002620), which is induced by the sexual transfer of the steroid hormone 20E and is implicated in the 
increase in egg development experienced by mated An. gambiae females after blood feeding17.

In An. gambiae females, changes in gene expression were detected in five proteases (ANOVA analysis; 
AGAP000885 P = 0.0038, AGAP001791 P = 0.0042; AGAP005195 P = 0.0179; AGAP005196 P = 0.0023; 
AGAP009791 P = 0.0030), all downregulated at 1 day PM (post-hoc analysis with FDR correction; AGAP000885 
P = 0.0092, AGAP001791 P = 0.0096; AGAP005195 P = 0.0242; AGAP005196 P = 0.0056; AGAP009791 
P = 0.0064). Moreover, four of these genes showed reduced expression levels also at 4 days PM (post-hoc 
analysis with FDR correction; AGAP000885 P = 0.0085, AGAP001791 P = 0.0276; AGAP005195 P = 0.0368; 
AGAP009791 P = 0.004) (Table 1, Fig. 2).

In An. coluzzii females, transcript levels were reduced for three proteases. AGAP001791 was downregulated 
at 4 days PM (ANOVA P = 0.04; post-hoc analysis with FDR correction P = 0.05), AGAP005194 at 1 day PM 
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(ANOVA P = 0.0042; post-hoc analysis with FDR correction P = 0.0021), and AGAP009791 at both time points 
analyzed (ANOVA P = 0.0013; post-hoc analysis with FDR correction: 1 PM P = 0.0069; 4 days PM P = 0.0046). 
Furthermore, MISO was strongly up-regulated at 1 day PM (ANOVA P < 0.0001; post-hoc analysis with FDR 
correction P < 0.0001), while the ABC transporter AGAP011518 was downregulated at 4 days PM (ANOVA 
P = 0.0069; post-hoc analysis with FDR correction P = 0.0022) (Table 2, Fig. 2).

With the exception of AGAP009766 and Andropin-like, which were previously shown to be upregulated after 
mating, results were consistent with those obtained in the laboratory, showing that the transcriptional response 
to mating is mostly conserved after colonization18,22.

Post-mating transcriptional response of genes related to reproduction, mating behavior and 
immunity in the carcass of field An. gambiae and An. coluzzii females. We next analyzed the 
expression of genes in the female carcass, initially focusing on seven factors that may be related to reproductive 
success or mating behavior (Table 1 and Table 2; Fig. 3). Our analysis included Vitellogenin (Vg, AGAP004203), 
which encodes a yolk protein that is needed for egg development46 and which in Aedes aegypti mosquitoes is 
strongly upregulated by 20E synthetized after blood feeding47, and other six genes shown to be differentially 
expressed in An. gambiae and An. coluzzii virgin females48 that we reasoned might be associated with assor-
tative mating behavior. These included: the sex determining gene doublesex (dsx, AGAP004050), the antennal 
carrier protein AP-1, (AGAP004799), the odorant binding protein 25 (OBP25, AGAP012320), the cuticular 
protein CPF3 (AGAP004690), the glutathione S transferases – epsilon class 2 (GST-E2, AGAP009194); and lin-
gerer (AGAP004817). dsx regulates the terminal sexual differentiation in most insects49, and specifically it 
determines the differentiation of neurons that control male courtship behavior50 and female sexual receptiv-
ity51–53. In Drosophila, lingerer is involved in the control of male copulatory organs during courtship54. CPF3 is a 
non-canonical cuticular protein with no chitin-binding capacity, which may be part of the epicuticle55 where it 
could bind to sex pheromones such as cuticular hydrocarbons (CHCs)48. Odorant binding proteins such as AP-1 
and OBP25 transfer odorants to specific receptors56 and might play a role in female mate choice by helping the 
identification of co-specific males. GST-E2 might instead be involved in the metabolism of chemical stimuli from 
antennae and other sensory organs57, thus regulating the availability of stimulants such as CHCs.

While no changes were detected in An. coluzzii (Table 2, Fig. 3), in An. gambiae mean gene expression levels 
were different for five of the seven genes analyzed (dsx ANOVA P = 0.0408; CPF3 ANOVA P = 0.0007; AP-1 
ANOVA P = 0.040; OBP25 ANOVA P = 0.0037; Vg ANOVA P < 0.0001). dsx, CPF3 and AP-1 were downregu-
lated at 1 day PM (post-hoc analysis with FDR correction dsx P = 0.014; CPF3 P = 0.0013; AP-1 P = 0.0123) and 
AP-1 was down-regulated also at 4 days PM (P = 0.0342). OBP25 and Vg were instead upregulated at 1 day PM 
(post-hoc analysis with FDR correction OBP25 P = 0.0109; Vg P < 0.0001) (Table 2, Fig. 3).

We finally tested whether mating induces a differential immune response in the two species, possibly driven by 
diverging sexually transmitted pathogens58,59. To this aim, we evaluated the expression levels in the female carcass 

Figure 1. Schematic map of the collection sites in Burkina Faso. For each of the two sites (Vallèe du Kou 
and Soumousso), the total number of mosquitoes collected is indicated. The relative percentage of species is 
reported in the pie charts for both larval and adult samples, and species are color-coded as described in the 
figure. Anopheles arabiensis were not studied further. The map and the drawings have been generated using 
Illustrator CC 2017 (Adobe).
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of five immunity-related genes: the thioester containing protein 1 (TEP1), which is a complement-like factor, 
homologous to the human C3, that binds and mediates killing of pathogens including Plasmodium parasites60; the 
leucine-rich immune protein 1 (LRIM1), which circulates in the hemolymph as a disulphide-bounded complex 
with the leucine-rich protein APL1C and interacts with TEP1 controlling its activity61,62; and the antimicrobial 
peptides cecropin 1 (CEC1), CEC3, and gambicin (GAMB)63,64. Only TEP1 showed to be upregulated in An. gam-
biae females at 1 day PM (ANOVA P = 0.0297; post-hoc test with FDR correction P = 0.0044).

Discussion
Our results on the transcriptional response to mating in An. gambiae and An. coluzzii females collected from nat-
ural mating swarms largely corroborate previous data obtained under laboratory conditions17,18,22, demonstrating 
the opportunity of studying complex phenomena such as mating and post-mating behavior in laboratory colo-
nies. This result is remarkable when considering that gene expression is age-dependent65–67 and that in our study 
it was not possible to precisely age-match mated females to virgin ones. For this reason - as well as for the limited 
number of samples we analyzed due to intrinsic difficulties in collecting couples from natural mating swarms - we 
observed some variability in our results that probably limited our power to detect subtler, age-dependent changes.

Despite these limitations, some interesting differences were detected in the post-mating responses of the two 
species samples. Although field An. gambiae and An. coluzzii males and females from the same geographic areas 
studied here share largely overlapping reproductive microbiomes42, we detected a mating-induced regulation 
of TEP1, a key immune gene, in the carcass of An. gambiae females. This species-specific upregulation may be 
due to sexual transfer of microorganisms populating the An. gambiae male reproductive tract, similarly to what 
observed in D. melanogaster where mating anticipates immune reactions to sexually transmitted pathogens pos-
sibly as a mechanism to enhance fecundity68.

Perhaps more interestingly, our data also highlight differential mating-induced changes in genes involved in 
oogenesis, which may reflect inter-specific differences in the physiological processes leading to egg development. 
First, we show that MISO – an atrial gene strongly induced by sexual transfer of 20E that regulates the number 
of eggs developed by females after mating and blood feeding17,19 – was significantly upregulated only in An. 
coluzzii at 1 day PM, although a trend towards an increase was also observed in An. gambiae at the same time 
point (Tables 1 and 2, Fig. 2). Given that MISO interacts in the atrium with 20E transferred during mating17, 
the differential transcriptional dynamics of this gene in the two species suggests that the timing of release of the 
steroid hormone from the mating plug may be regulated in a species-specific fashion. Second, we reveal that 
another 20E-induced gene important for oogenesis, Vg, is differentially regulated in the female carcass of the 
two anophelines. This yolk protein precursor, produced in the fat body and incorporated in the developing eggs 

Tissue Function Gene
ANOVA P 
value

1 day post mating 4 days post mating

Virgin levels 
(mean ± SD)

Mated levels 
(mean ± SD)

Post-hoc 
Adj. P value

Virgin levels 
(mean ± SD)

Mated levels 
(mean ± SD)

Post-hoc 
Adj. P value

Lower 
Reproductive 
Tract

ABC transporter AGAP011518 ns 2.256 ± 0.665 0.938 ± 0.245 ns 1.758 ± 0.809 1.307 ± 0.950 ns

Oogenesis MISO ns 0.102 ± 0.005 23.18 ± 31.765 ns 0.885 ± 1.570 1.329 ± 2.534 ns

Proteolysis AGAP000885 0.0038 11.508 ± 4.195 2.750 ± 2.61 0.0092 13.920 ± 5.626 4.726 ± 4.479 0.0085

AGAP001791 0.0042 2.562 ± 1.298 0.835 ± 0.654 0.0096 1.960 ± 0.307 0.761 ± 0.494 0.0276

AGAP005194 ns 0.770 ± 0.396 0.353 ± 0.505 ns 0.6375 ± 0.320 0.289 ± 0.189 ns

AGAP005195 0.0179 18.590 ± 11.597 2.260 ± 0.504 0.0242 18.143 ± 13.357 5.507 ± 6.346 0.0368

AGAP005196 0.0023 3.742 ± 1.583 1.493 ± 0.443 0.0056 2.188 ± 1.004 0.919 ± 0.788 ns

AGAP009791 0.0030 1.232 ± 0.516 0.395 ± 0.216 0.0064 1.343 ± 0.418 0.646 ± 0.244 0.004

Protease inhibitor AGAP009766 ns 0.100 ± 0.001 0.315 ± 0.430 ns 0.750 ± 1.300 1.307 ± 0.950 ns

Other Andropin-like ns 0.100 ± 0.001 0.277 ± 0.229 ns 0.100 ± 0.001 0.127 ± 0.039 ns

Carcass

Behavior dsx 0.0408 0.031 ± 0.009 0.018 ± 0.009 0.014 0.028 ± 0.005 0.0021 ± 0.006 ns

CPF3 0.0007 0.068 ± 0.053 0.009 ± 0.015 0.0013 0.007 ± 0.006 0.001 ± 0.001 ns

AP-1 0.0040 0.014 ± 0.004 0.008 ± 0.002 0.0123 0.011 ± 0.005 0.007 ± 0.003 0.0342

lingerer ns 0.030 ± 0.006 0.035 ± 0.010 ns 0.028 ± 0.006 0.025 ± 0.008 ns

GSTE2 ns 0.006 ± 0.003 0.005 ± 0.006 ns 0.004 ± 0.001 0.006 ± 0.003 ns

OBP25 0.0037 0.007 ± 0.003 0.014 ± 0.009 0.0109 0.004 ± 0.002 0.005 ± 0.003 ns

Lipid Transport Vg <0.0001 0.002 ± 0.001 0.867 ± 0.318 <0.0001 0.001 ± 0.001 0.039 ± 0.038 ns

Immunity TEP1 0.0297 0.074 ± 0.023 0.214 ± 0.071 0.0044 0.145 ± 0.122 0.121 ± 0.041 ns

LRIM1 ns 0.032 ± 0.010 0.131 ± 0.124 ns 0.087 ± 0.034 0.096 ± 0.075 ns

CEC1 ns 0.258 ± 0.104 0.203 ± 0.033 ns 1.150 ± 1.090 0.331 ± 0.225 ns

CEC3 ns 0.905 ± 0.561 2.189 ± 2.987 ns 1.225 ± 0.489 2.227 ± 1.182 ns

GAMB ns 0.091 ± 0.059 0.043 ± 0.013 ns 0.065 ± 0.021 0.090 ± 0.030 ns

Table 1. Anopheles gambiae response to mating. Gene expression levels (normalized against Rpl19) in virgin 
and mated females (±Standard deviation) are indicated. Data show the results for both the 1 day and 4 days post 
mating response. One way ANOVA and pairwise post-hoc FDR - adjusted P values are also reported. In bold are 
genes showing significant post-mating regulation.
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via receptor-mediated endocytosis69, was strongly upregulated in An. gambiae at 1 day PM. This difference may 
reflect a reduced reliance of An. coluzzii females on mating for oogenesis, possibly due to an increased ability to 
store nutritional reserves during larval development70, and may provide some cues on why females of this species 
are competent to start egg development as virgins, while An. gambiae females generally need a mating-induced 
boost to promote the same process44,70,71. Even if the two species have a similar competence for Plasmodium 
transmission in the laboratory72,73, the fact that An. gambiae females often require multiple blood feedings to 
complete oogenesis70 may have important implication for malaria transmission in field settings, as it may increase 
its chances to become infected with Plasmodium parasites earlier in adult life and be associated with higher infec-
tion prevalence, as observed in some regions74,75.

We also detected differences in the regulation of the atrial proteolytic machinery which may be involved in 
the digestion of the mating plug and other seminal secretions. While the protease AGAP009791 was signifi-
cantly repressed in both species at both time points analyzed, other proteases were downregulated in a time- and 
species-specific manner. Specifically, AGAP001791 was repressed at both time points in An. gambiae but only at 4 
days PM in An. coluzzii; at 1 days PM AGAP000885, AGAP005195 and AGAP005196 were downregulated in An. 
gambiae, with AGAP000885 and AGAP005195 repressed also at 4 days PM in this species, while AGAP005194 
levels were downregulated in An. coluzzii at 1 day PM only. As postulated for MISO, the differential expression 
of proteolytic enzymes is consistent with the occurrence of species-specific timing of digestion of seminal secre-
tions, which is associated with fertility in Drosophila as well as An. gambiae20,25,26 and, when perturbed, can lead to 
speciation23,24. Intriguingly, several codons - including those close to the catalytic portion - of the genes encoding 
the atrial proteases AGAP005194, AGAP005195 and AGAP005196 are evolving under long-term and episodic 
positive selection in the An. gambiae complex76, supporting the hypothesis that timely and proper mating plug 
digestion might drive the emergence of post-mating pre-zygotic barriers in species of this complex. Similar to 
the activation of MISO and Vg, the post-mating downregulation of the proteolytic machinery appears to depend 
on the sexual transfer of 20E, as all six proteases analyzed here were repressed in the atrium of virgin laboratory 
females following 20E injection18.

Finally, the expression of four genes encoding for factors possibly involved in mating behavior (dsx, CPF3, AP-1  
and OBP25) was regulated by mating in An. gambiae females only. dsx is a key gene in the sexual differentiation 
cascade, and is produced as sex-specific isoforms77,78 that in Drosophila govern multiple aspects of reproductive 
biology, including the female receptivity to mating and the development and the activity of neural circuit that 
regulate sex-specific sexual behavior51–53. Furthermore, in the fruit fly dsx controls the expression of genes that 
synthetize female-specific long-chain cuticular hydrocarbons (CHC), notably the desaturase DESAT-F, that are 
potent pheromones for male courtship behavior79. It is therefore possible that dsx may affect the synthesis of 

Tissue Function Gene
ANOVA P 
value

1 day post mating 4 days post mating

Virgin levels 
(mean ± SD)

Mated levels 
(mean ± SD)

Post-hoc 
Adj. P value

Virgin levels 
(mean ± SD)

Mated levels 
(mean ± SD)

Post-hoc 
Adj. P value

Lower 
Reproductive 
Tract

ABC transporter AGAP011518 0.0069 1.544 ± 0.619 1.042 ± 0.543 ns 3.467 ± 2.075 0.223 ± 0.112 0.0022

Oogenesis MISO <0.0001 0.102 ± 0.005 134.506 ± 78.151 <0.0001 1.544 ± 0.619 1.042 ± 0.543 ns

Proteolysis AGAP000885 ns 7.792 ± 6.183 3.080 ± 4.471 ns 9.017 ± 3.991 2.677 ± 1.030 ns

AGAP001791 0.0443 1.566 ± 0.582 0.596 ± 0.422 ns 1.666 ± 1.131 0.340 ± 0.192 0.05

AGAP005194 0.0042 1.138 ± 0.727 0.138 ± 0.075 0.0021 0.237 ± 0.083 0.150 ± 0.071 ns

AGAP005195 ns 13.390 ± 12.16 2.280 ± 4.231 ns 4.341 ± 3.403 1.505 ± 0.926 ns

AGAP005196 ns 2.650 ± 1.105 1.430 ± 1.045 ns 2.630 ± 2.165 0.277 ± 0.170 ns

AGAP009791 0.0013 0.976 ± 0.192 0.290 ± 0.254 0.0069 1.150 ± 0.495 0.277 ± 0.163 0.0046

Protease inhibitor AGAP009766 ns 0.174 ± 0.165 0.100 ± 0.001 ns 5.303 ± 5.689 0.100 ± 0.001 ns

Other Andropin-like ns 0.100 ± 0.001 0.682 ± 0.739 ns 0.100 ± 0.001 0.317 ± 0.165 ns

Carcass

Behavior dsx ns 0.043 ± 0.023 0.049 ± 0.047 ns 0.025 ± 0.010 0.019 ± 0.005 ns

CPF3 ns 0.039 ± 0.019 0.089 ± 0.169 ns 0.008 ± 0.007 0.011 ± 0.014 ns

AP-1 ns 0.010 ± 0.012 0.017 ± 0.018 ns 0.008 ± 0.004 0.005 ± 0.002 ns

lingerer ns 0.025 ± 0.012 0.049 ± 0.073 ns 0.046 ± 0.014 0.058 ± 0.029 ns

GSTE2 ns 0.032 ± 0.016 0.036 ± 0.027 ns 0.032 ± 0.013 0.032 ± 0.015 ns

OBP25 0.0128 0.029 ± 0.021 0.043 ± 0.035 ns 0.008 ± 0.005 0.005 ± 0.002 ns

Lipid Transport Vg ns 0.009 ± 0.003 0.152 ± 0.267 ns 0.004 ± 0.004 0.046 ± 0.078 ns

Immunity TEP1 ns 0.094 ± 0.033 0.125 ± 0.046 ns 0.133 ± 0.060 0.171 ± 0.054 ns

LRIM1 ns 0.037 ± 0.016 0.038 ± 0.007 ns 0.048 ± 0.014 0.053 ± 0.017 ns

CEC1 ns 0.124 ± 0.060 0.295 ± 0.245 ns 0.562 ± 0.670 0.487 ± 0.168 ns

CEC3 0.0237 0.651 ± 0.491 0.575 ± 0.343 ns 1.260 ± 0.326 0.640 ± 0.205 ns

GAMB ns 0.056 ± 0.046 0.068 ± 0.056 ns 0.107 ± 0.053 0.059 ± 0.023 ns

Table 2. Anopheles coluzzii response to mating. Gene expression levels (normalized against Rpl19) in virgin 
and mated females (±Standard deviation) are indicated. Data show the results for both the 1 day and 4 days post 
mating response. One way ANOVA and pairwise post-hoc FDR - adjusted P values are also reported. In bold are 
genes showing significant post-mating regulation.
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CHC pheromones also in An. gambiae females, consistent with the observation that An. gambiae and An. coluzzii 
have, indeed, slightly different CHC profiles that are altered after mating36,38. Interestingly, CPF3, another gene 
related to CHC, is also downregulated in An. gambiae females. This cuticular protein is likely expressed in the 
epicuticle, where it is postulated to bind to cuticular pheromones such as CHCs48. Because post-mating changes 
in the CHCs profiles affect female attractiveness in many monandrous insect species80,81, the An. gambiae-specific 
downregulation of genes related to chemical contact cues might reflect the occurrence of different post-mating 
signals in the two species.

Interestingly, both cuticular proteins (CPs) and CHCs have been linked to 20E function, as this ecdysteroid 
reduces CP expression levels during development82 and is involved in CHC production in adult Drosophila83. 
Although a link between expression of the genes studied here and male-transferred 20E has yet to be confirmed in 
field setting, the different post-mating regulation of genes shown in laboratory conditions to be controlled by this 
steroid hormone17,18,21 supports the hypothesis of divergent male 20E effects in the two species, consistently with 
the finding of differential 20E levels in the MAGs of An. coluzzii and An. gambiae males in Burkina Faso84. It is 
intriguing to speculate that the transcriptional differences observed here could represent signatures of a divergent 
evolutionary arms race between the sexes, which in turn may have led to changes in key reproductive processes 
and possibly to the development of mechanisms of sexual isolation85,86.

Materials and Methods
Mosquito sample preparation. Anopheles gambiae and An. coluzzii were collected in September 2009 
in the Western part of Burkina Faso, i.e. in the village of Soumousso (11°00′46′N, 4°02′45W) and in Vallèe du 
Kou (11°24′N, 4°24′W), located 55 km east and 30 km north-west of Bobo-Dioulasso, respectively. While in 
Soumousso larval breeding sites are mostly temporary, rain-dependent puddles more favorable to An. gambiae, 
the irrigation scheme in Vallèe du Kou largely favors An. coluzzii.

Figure 2. Gene expression levels after mating in the female lower reproductive tract (LRT). Gene expression 
levels are shown as Rpl19 normalized values (±Standard Error). (A) An. gambiae female LRT were tested as 
virgins (cyan dots) or at 1 day and 4 days post mating (blue dots). (B) An. coluzzii female LRT were tested 
as virgins (light green dots) or at 1 day and 4 days post mating (dark green dots). Red asterisks indicate a 
significant difference between mated and virgin females: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.001.
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Virgin females were obtained from larvae collected in natural breeding sites (3 in Soumousso and 6 in Vallèe 
du Kou) and reared to the adult stage in natural climatic conditions and photoperiod using cages placed in the 
outdoor space available at the IRSS laboratory in Bobo-Dioulasso. In order to ensure females would not mate, 
pupae were individually transferred in single cups and their sex determined at emergence. Using this method, 
adult females and males were never in contact with each other.

Mating couples were collected from naturally occurring swarms as previously described33,39,87, allowed to 
complete copulation, transferred to single cups using mouth aspirators, and brought to the laboratory in sealed 
containers avoiding shifts in temperature and humidity.

Virgin and mated females were maintained in individual cups and DNA was extracted from single legs 
removed from live specimens for genotyping88 prior to dissections of reproductive organs. These were carried 
out under a dissecting stereo-microscope (5x magnification lens) at different time intervals, i.e. 2 and 5 days post 
emergence in the case of virgin females, and 24 hours and 4 days post-mating in the case of mated ones (to analyze 
both short-term and long-term response to mating). The time points for virgin females were selected to match 
as much as possible the age of mated females based on data showing that most females mate on the second night 
after emergence44. The lower reproductive tract (LRT, comprising atrium and spermathecae) and the rest of the 
body (carcass) of single females were stored separately in RNAlater solution (Ambion) and pools of five individ-
ual tissues/species/time interval were obtained for each time point (Table S1).

RNA extraction and cDNA synthesis. For tissue-specific analysis, total RNA was extracted using TRI 
Reagent (Helena Biosciences). The amount of RNA for female carcasses was limited to 1 μg. All samples were 
treated with DNase I (Invitrogen), according to manufacturer’s guidelines. cDNAs were synthesized in 100 μl 
reactions using 1x First Strand buffer, 5 mM DDT, 0.5 mM dNTPs, 2.5 μM random hexamers, 40 units RNaseOut 
recombinant ribonuclease inhibitor, and 125 units of M-MLV reverse transcriptase (all reagents from Invitrogen).

Quantitative Reverse Transcription PCR with SYBR green detection. Samples were run in 15 μl 
reaction volume using 1x Fast SYBR Green Master Mix (Applied Biosystems). Gene expression was quantified in 
duplicates on a StepOnePlus Real-Time thermocycler (Applied Biosystems) using the following program: 95 °C 
for 15 min, then 40 cycles (95 °C for 15 sec, 60 °C for 60 sec) followed by a dissociation curve analysis. Primers 

Figure 3. Gene expression levels after mating in the female carcass. Gene expression levels are shown as Rpl19 
normalized values (±Standard Error). (A) An. gambiae female carcasses were tested as virgins (cyan dots) or 
at 1 day and 4 days post mating (blue dots). (B) An. coluzzii female carcasses were tested as virgins (light green 
dots) or at 1 day and 4 days post mating (dark green dots). Red asterisks indicate a significant difference between 
mated and virgin females: *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.001.
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used for qRT-PCR are listed in Table S2. Three technical replicates were used for each biological replicate for each 
gene. A standard curve against serial dilutions of cDNA templates (mated and virgin) was used for each gene to 
determine the linear range of the assay.

Statistical analysis. Gene expression levels were normalized using deltaCt method against the ribosomal 
gene RpL19 (AGAP004422), which is expressed at high levels and does not respond to mating18,22. To test for 
mating-induced changes in gene expression, the two species were studied separately. As we do not know if the 
primers anneal with the same efficiency or if the reference gene is expressed at the same levels in the two species, 
we did not perform cross-species comparisons. An ANOVA was first used to test whether each gene showed sig-
nificant changes in the two time points analyzed, including in the analysis both mated and virgin samples. If the 
global F test gave positive results, pairwise posthoc contrast tests (Tukey-Kramer procedure) have been used to 
determine differences between mated and virgin females at each time point analyzed. To control for possible Type 
I error arising through use of multiple ANOVA tests, the P values were corrected by applying a False Discovery 
Rate procedure (FDR).
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