74 research outputs found

    Use of the atmospheric generators for capnophilic bacteria Genbag-CO2 for the evaluation of in vitro Plasmodium falciparum susceptibility to standard anti-malarial drugs

    Get PDF
    Background: The aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag (R) system associated with the atmospheric generators for capnophilic bacteria Genbag CO2 (R) was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions. Methods: The susceptibility of 36 pre-identified parasite strains from a wide panel of countries was assessed for nine standard anti-malarial drugs (chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone and pyrimethamine) by the standard 42-hour H-3-hypoxanthine uptake inhibition method using the Genbag CO2 (R) system and compared to controlled incubator conditions (5% CO2 and 10% O-2). Results: The counts per minute values in the control wells in incubator atmospheric conditions (5% CO2 and 10% O-2) were significantly higher than those of Genbag (R) conditions (2738 cpm vs 2282 cpm, p < 0.0001). The geometric mean IC50 estimated under the incubator atmospheric conditions was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011) and higher for the quinolines: chloroquine (127 vs 94 nM, p < 0.0001), quinine (580 vs 439 nM, p < 0.0001), monodesethylamodiaquine (41.4 vs 31.8 nM, p < 0.0001), mefloquine (57.5 vs 49.7 nM, p = 0.0011) and lumefantrine (23.8 vs 21.2 nM, p = 0.0044). There was no significant difference of IC50 between the 2 conditions for dihydroartemisinin, doxycycline and pyrimethamine. To reduce this difference in term of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag (R) conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O-2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2000 nM). Conclusions: The atmospheric generators for capnophilic bacteria Genbag CO2 (R) is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance

    Efficacy of non-artemisinin- and artemisinin-based combination therapies for uncomplicated falciparum malaria in Cameroon

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of drug combinations, including non-artemisinin-based and artemisinin-based combination therapy (ACT), is a novel strategy that enhances therapeutic efficacy and delays the emergence of multidrug-resistant <it>Plasmodium falciparum</it>. Its use is strongly recommended in most sub-Saharan African countries, namely Cameroon, where resistance to chloroquine is widespread and antifolate resistance is emerging.</p> <p>Methods</p> <p>Studies were conducted in Cameroonian children with acute uncomplicated <it>P. falciparum </it>malaria according to the standard World Health Organization protocol at four sentinel sites between 2003 and 2007. A total of 1,401 children were enrolled, of whom 1,337 were assigned to randomized studies and 64 were included in a single non-randomized study. The proportions of adequate clinical and parasitological response (PCR-uncorrected on day 14 and PCR-corrected on day 28) were the primary endpoints to evaluate treatment efficacy on day 14 and day 28. The relative effectiveness of drug combinations was compared by a multi-treatment Bayesian random-effect meta-analysis.</p> <p>Findings</p> <p>The results based on the meta-analysis suggested that artesunate-amodiaquine (AS-AQ) is as effective as other drugs (artesunate-sulphadoxine-pyrimethamine [AS-SP], artesunate-chlorproguanil-dapsone [AS-CD], artesunate-mefloquine [AS-MQ], dihydroartemisinin-piperaquine [DH-PP], artemether-lumefantrine [AM-LM], amodiaquine, and amodiaquine-sulphadoxine-pyrimethamine [AQ-SP]). AM-LM appeared to be the most effective with no treatment failure due to recrudescence, closely followed by DH-PP.</p> <p>Conclusion</p> <p>Although AM-LM requires six doses, rather than three doses for other artemisinin-based combinations, it has potential advantages over other forms of ACT. Further studies are needed to evaluate the clinical efficacy and tolerance of these combinations in different epidemiological context.</p

    Molecular monitoring of plasmodium falciparum drug susceptibility at the time of the introduction of artemisinin-based combination therapy in Yaoundé, Cameroon: Implications for the future

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regular monitoring of the levels of anti-malarial resistance of <it>Plasmodium falciparum </it>is an essential policy to adapt therapy and improve malaria control. This monitoring can be facilitated by using molecular tools, which are easier to implement than the classical determination of the resistance phenotype. In Cameroon, chloroquine (CQ), previously the first-line therapy for uncomplicated malaria was officially withdrawn in 2002 and replaced initially by amodiaquine (AQ) monotherapy. Then, artemisinin-based combination therapy (ACT), notably artesunate-amodiaquine (AS-AQ) or artemether-lumefantrine (AL), was gradually introduced in 2004. This situation raised the question of the evolution of <it>P. falciparum </it>resistance molecular markers in Yaoundé, a highly urbanized Cameroonian city.</p> <p>Methods</p> <p>The genotype of <it>pfcrt </it>72 and 76 and <it>pfmdr1 </it>86 alleles and <it>pfmdr1 </it>copy number were determined using real-time PCR in 447 <it>P. falciparum </it>samples collected between 2005 and 2009.</p> <p>Results</p> <p>This study showed a high prevalence of parasites with mutant <it>pfcrt </it>76 (83%) and <it>pfmdr1 </it>86 (93%) codons. On the contrary, no mutations in the <it>pfcrt </it>72 codon and no samples with duplication of the <it>pfmdr1 </it>gene were observed.</p> <p>Conclusion</p> <p>The high prevalence of mutant <it>pfcrt </it>76T and <it>pfmdr1 </it>86Y alleles might be due to the choice of alternative drugs (AQ and AS-AQ) known to select such genotypes. Mutant <it>pfcrt </it>72 codon was not detected despite the prolonged use of AQ either as monotherapy or combined with artesunate. The absence of <it>pfmdr1 </it>multicopies suggests that AL would still remain efficient. The limited use of mefloquine or the predominance of mutant <it>pfmdr1 </it>86Y codon could explain the lack of <it>pfmdr1 </it>amplification. Indeed, this mutant codon is rarely associated with duplication of <it>pfmdr1 </it>gene. In Cameroon, the changes of therapeutic strategies and the simultaneous use of several formulations of ACT or other anti-malarials that are not officially recommended result in a complex selective pressure, rendering the prediction of the evolution of <it>P. falciparum </it>resistance difficult. This public health problem should lead to increased vigilance and regular monitoring.</p

    Vivax malaria in Mauritania includes infection of a Duffy-negative individual

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duffy blood group polymorphisms are important in areas where <it>Plasmodium vivax </it>is present because this surface antigen is thought to act as a key receptor for this parasite. In the present study, Duffy blood group genotyping was performed in febrile uninfected and <it>P. vivax</it>-infected patients living in the city of Nouakchott, Mauritania.</p> <p>Methods</p> <p><it>Plasmodium vivax </it>was identified by real-time PCR. The Duffy blood group genotypes were determined by standard PCR followed by sequencing of the promoter region and exon 2 of the Duffy gene in 277 febrile individuals. Fisher's exact test was performed in order to assess the significance of variables.</p> <p>Results</p> <p>In the Moorish population, a high frequency of the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was observed in uninfected individuals (27.8%), whereas no <it>P. vivax</it>-infected patient had this genotype. This was followed by a high level of <it>FYA/FYB</it>, <it>FYB/FYB</it>, <it>FYB/FYB<sup>ES </sup></it>and <it>FYA/FYB<sup>ES </sup></it>genotype frequencies, both in the <it>P. vivax</it>-infected and uninfected patients. In other ethnic groups (Poular, Soninke, Wolof), only the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype was found in uninfected patients, whereas the <it>FYA/FYB<sup>ES </sup></it>genotype was observed in two <it>P. vivax</it>-infected patients. In addition, one patient belonging to the Wolof ethnic group presented the <it>FYB<sup>ES</sup>/FYB<sup>ES </sup></it>genotype and was infected by <it>P. vivax</it>.</p> <p>Conclusions</p> <p>This study presents the Duffy blood group polymorphisms in Nouakchott City and demonstrates that in Mauritania, <it>P. vivax </it>is able to infect Duffy-negative patients. Further studies are necessary to identify the process that enables this Duffy-independent <it>P. vivax </it>invasion of human red blood cells.</p

    Haematological consequences of acute uncomplicated falciparum malaria: a WorldWide Antimalarial Resistance Network pooled analysis of individual patient data

    Get PDF
    Background: Plasmodium falciparum malaria is associated with anaemia-related morbidity, attributable to host, parasite and drug factors. We quantified the haematological response following treatment of uncomplicated P. falciparum malaria to identify the factors associated with malarial anaemia. Methods: Individual patient data from eligible antimalarial efficacy studies of uncomplicated P. falciparum malaria, available through the WorldWide Antimalarial Resistance Network data repository prior to August 2015, were pooled using standardised methodology. The haematological response over time was quantified using a multivariable linear mixed effects model with nonlinear terms for time, and the model was then used to estimate the mean haemoglobin at day of nadir and day 7. Multivariable logistic regression quantified risk factors for moderately severe anaemia (haemoglobin < 7 g/dL) at day 0, day 3 and day 7 as well as a fractional fall ≥ 25% at day 3 and day 7. Results: A total of 70,226 patients, recruited into 200 studies between 1991 and 2013, were included in the analysis: 50,859 (72.4%) enrolled in Africa, 18,451 (26.3%) in Asia and 916 (1.3%) in South America. The median haemoglobin concentration at presentation was 9.9 g/dL (range 5.0–19.7 g/dL) in Africa, 11.6 g/dL (range 5.0–20.0 g/dL) in Asia and 12.3 g/dL (range 6.9–17.9 g/dL) in South America. Moderately severe anaemia (Hb < 7g/dl) was present in 8.4% (4284/50,859) of patients from Africa, 3.3% (606/18,451) from Asia and 0.1% (1/916) from South America. The nadir haemoglobin occurred on day 2 post treatment with a mean fall from baseline of 0.57 g/dL in Africa and 1.13 g/dL in Asia. Independent risk factors for moderately severe anaemia on day 7, in both Africa and Asia, included moderately severe anaemia at baseline (adjusted odds ratio (AOR) = 16.10 and AOR = 23.00, respectively), young age (age < 1 compared to ≥ 12 years AOR = 12.81 and AOR = 6.79, respectively), high parasitaemia (AOR = 1.78 and AOR = 1.58, respectively) and delayed parasite clearance (AOR = 2.44 and AOR = 2.59, respectively). In Asia, patients treated with an artemisinin-based regimen were at significantly greater risk of moderately severe anaemia on day 7 compared to those treated with a non-artemisinin-based regimen (AOR = 2.06 [95%CI 1.39–3.05], p < 0.001). Conclusions: In patients with uncomplicated P. falciparum malaria, the nadir haemoglobin occurs 2 days after starting treatment. Although artemisinin-based treatments increase the rate of parasite clearance, in Asia they are associated with a greater risk of anaemia during recovery
    corecore