87 research outputs found

    Combined kinetic and DFT studies on the stabilization of the pyramidal form of H3PO2 at the heterometal site of [Mo3M’S4(H2O)10]4+ clusters (M’= Pd, Ni)

    Get PDF
    Kinetic and DFT studies have been carried out on the reaction of the [Mo3M’S4(H2O)10]4+ clusters (M’= Pd, Ni) with H3PO2 to form the [Mo3M’(pyr-H3PO2)S4(H2O)9]4+ complexes, in which the rare pyramidal form of H3PO2 is stabilized by coordination to the M’ site of the clusters. The reaction proceeds with biphasic kinetics, both steps showing a first order dependence with respect to H3PO2. These results are interpreted in terms of a mechanism that involves an initial substitution step in which one tetrahedral H3PO2 molecule coordinates to M’ through the oxygen atom of the P=O bond, followed by a second step that consists in tautomerization of coordinated H3PO2 assisted by a second H3PO2 molecule. DFT studies have been carried out to obtain information on the details of both kinetic steps, the major finding being that the role of the additional H3PO2 molecule in the second step consists in catalysing a hydrogen shift from phosphorus to oxygen in O-coordinated H3PO2, which is made possible by its capability of accepting a proton from P-H to form H4PO2 + and then transfer it to the oxygen. DFT studies have been also carried out on the reaction at the Mo centres to understand the reasons that make these metal centres ineffective for promoting tautomerizatio

    Benchmarking of DFT methods using experimental free energies and volumes of activation for the cycloaddition of alkynes to cuboidal Mo3S4 clusters

    Get PDF
    Here, the kinetics of the concerted [3 + 2] cycloaddition reaction between the [Mo3(μ3‐S)(μ‐S)3Cl3(dmen)3]+ (dmen = N,N′‐dimethyl‐ethylenediamine) ([1]+) cluster and various alkynes to form dithiolene derivatives is thoroughly studied, with measurements at different temperatures and pressures allowing the determination of the free energies and volumes of activation. These parameters, together with the available single‐crystal X‐ray diffraction structures, are used to test a number of commonly used density functional theory (DFT) methods from Jacob's ladder, as well as the effects associated with the size of the basis sets, the way in which solvent effects are taken into account, or the inclusion of dispersion effects. Overall, a protocol that leads to average deviations between experimental and computed ΔV and ΔG values similar to the uncertainty of the experimental measurements is obtained

    Benchmarking of DFTmethods using experimental free energies and volumes of activation for the cycloaddition of alkynes to cuboidalMo(3)S(4)clusters

    Get PDF
    Here, the kinetics of the concerted [3 + 2] cycloaddition reaction between the [Mo3(μ3‐S)(μ‐S)3Cl3(dmen)3]+ (dmen = N,N′‐dimethyl‐ethylenediamine) ([1]+) cluster and various alkynes to form dithiolene derivatives is thoroughly studied, with measurements at different temperatures and pressures allowing the determination of the free energies and volumes of activation. These parameters, together with the available single‐crystal X‐ray diffraction structures, are used to test a number of commonly used density functional theory (DFT) methods from Jacob's ladder, as well as the effects associated with the size of the basis sets, the way in which solvent effects are taken into account, or the inclusion of dispersion effects. Overall, a protocol that leads to average deviations between experimental and computed ΔV‡ and ΔG‡ values similar to the uncertainty of the experimental measurements is obtained

    Base-Free Catalytic Hydrogen Production from Formic Acid Mediated by a Cubane-Type Mo3S4 Cluster Hydride

    Get PDF
    Formic acid (FA) dehydrogenation is an attractive process in the implementation of a hydrogen economy. To make this process greener and less costly, the interest nowadays is moving toward non-noble metal catalysts and additive-free protocols. Efficient protocols using earth abundant first row transition metals, mostly iron, have been developed, but other metals, such as molybdenum, remain practically unexplored. Herein, we present the transformation of FA to form H2 and CO2 through a cluster catalysis mechanism mediated by a cuboidal [Mo3S4H3(dmpe)3]+ hydride cluster in the absence of base or any other additive. Our catalyst has proved to be more active and selective than the other molybdenum compounds reported to date for this purpose. Kinetic studies, reaction monitoring, and isolation of the [Mo3S4(OCHO)3(dmpe)3]+ formate reaction intermediate, in combination with DFT calculations, have allowed us to formulate an unambiguous mechanism of FA dehydrogenation. Kinetic studies indicate that the reaction at temperatures up to 60 °C ends at the triformate complex and occurs in a single kinetic step, which can be interpreted in terms of statistical kinetics at the three metal centers. The process starts with the formation of a dihydrogen-bonded species with Mo–H···HOOCH bonds, detected by NMR techniques, followed by hydrogen release and formate coordination. Whereas this process is favored at temperatures up to 60 °C, the subsequent β-hydride elimination that allows for the CO2 release and closes the catalytic cycle is only completed at higher temperatures. The cycle also operates starting from the [Mo3S4(OCHO)3(dmpe)3]+ formate intermediate, again with preservation of the cluster integrity, which adds our proposal to the list of the infrequent cluster catalysis reaction mechanisms.Funding for open access charge: CRUE-Universitat Jaume

    Efficient (Z)-selective semihydrogenation of alkynes catalyzed by air-stable imidazolyl amino molybdenum cluster sulfides

    Get PDF
    Imidazolyl amino cuboidal Mo3(μ3-S)(μ-S)3 clusters have been investigated as catalysts for the semihydrogenation of alkynes. For that purpose, three new air-stable cluster salts [Mo3S4Cl3(ImNH2)3]BF4 ([1]BF4), [Mo3S4Cl3(ImNH(CH3))3]BF4 ([2]BF4) and [Mo3S4Cl3(ImN(CH3)2)3]BF4 ([3]BF4) have been isolated in moderate to high yields and fully characterized. Crystal structures of complexes [1]PF6 and [2]Cl confirm the formation of a single isomer in which the nitrogen atoms of the three imidazolyl groups of the ligands are located trans to the capping sulfur atom which leaves the three bridging sulfur centers on one side of the trimetallic plane while the amino groups lie on the opposite side. Kinetic studies show that the cluster bridging sulfurs react with diphenylacetylene (dpa) in a reversible equilibrium to form the corresponding dithiolene adduct. Formation of this adduct is postulated as the first step in the catalytic semihydrogenation of alkynes mediated by molybdenum sulfides. These complexes catalyze the (Z)-selective semihydrogenation of diphenylacetylene (dpa) under hydrogen in the absence of any additives. The catalytic activity lowers sequentially upon replacement of the hydrogen atoms of the N–H2 moiety in 1+ without reaching inhibition. Mechanistic experiments support a sulfur centered mechanism without participation of the amino groups. Different diphenylacetylene derivatives are selectively hydrogenated using complex 1+ to their corresponding Z-alkenes in excellent yields. Extension of this protocol to 3,7,11,15-tetramethylhexadec-1-yn-3-ol, an essential intermediate for the production of vitamin E, affords the semihydrogenation product in very good yield

    Hydrogen-ion driven molecular motions in Cu2+-complexes of a ditopic phenanthrolinophane ligand

    Get PDF
    One of the first kinetic evaluations of a metal ion interchange between the two coordination sites of a ditopic macrocycle is presented.Garcia-España Monsonis, Enrique, [email protected] ; Soriano Soto, Concepción, [email protected] ; Verdejo Viu, Begoña, [email protected]

    Kinetics Aspects of the Reversible Assembly of Copper in Heterometallic Mo3CuS4 Clusters with 4,4′-Di-tert-butyl-2,2′- bipyridine

    Get PDF
    Treatment of the triangular [Mo3S4Cl3(dbbpy)3]Cl cluster ([1]Cl) with CuCl produces a novel tetrametallic cuboidal cluster [Mo3(CuCl)S4Cl3(dbbpy)3][CuCl2] ([2][CuCl2]), whose crystal structure was determined by X-ray diffraction (dbbpy = 4,4′-di-tert-butyl-2,2′-bipyridine). This species, which contains two distinct types of Cu(I), is the first example of a diimine-functionalized heterometallic M3M′S4 cluster. Kinetics studies on both the formation of the cubane from the parent trinuclear cluster and its dissociation after treatment with halides, supported by NMR, electrospray ionization mass spectrometry, cyclic voltammetry, and density functional theory calculations, are provided. On the one hand, the results indicate that addition of Cu(I) to [1]+ is so fast that its kinetics can be monitored only by cryo-stopped flow at −85 °C. On the other hand, the release of the CuCl unit in [2]+ is also a fast process, which is unexpectedly assisted by the CuCl2 − counteranion in a process triggered by halide (X−) anions. The whole set of results provide a detailed picture of the assembly−disassembly processes in this kind of cluster. Interconversion between trinuclear M3S4 clusters and their heterometallic M3M′S4 derivatives can be a fast process occurring readily under the conditions employed during reactivity and catalytic studies, so their occurrence is a possibility that must be taken into account in future studies

    Acid-Triggered O−O Bond Heterolysis of a Nonheme FeIII (OOH) Species for the Stereospecific Hydroxylation of Strong C−H Bonds

    Get PDF
    A novel hydroperoxoiron(III) species [FeIII(OOH)(MeCN)(PyNMe3)]2+ (3) has been generated by reaction of its ferrous precursor [FeII(CF3SO3)2(PyNMe3)] (1) with hydrogen peroxide at low temperatures. This species has been characterized by several spectroscopic techniques and cryospray mass spectrometry. Similar to most of the previously described low‐spin hydroperoxoiron(III) compounds, 3 behaves as a sluggish oxidant and it is not kinetically competent for breaking weak C−H bonds. However, triflic acid addition to 3 causes its transformation into a much more reactive compound towards organic substrates that is capable of oxidizing unactivated C−H bonds with high stereospecificity. Stopped‐flow kinetic analyses and theoretical studies provide a rationale for the observed chemistry, a triflic‐acid‐assisted heterolytic cleavage of the O−O bond to form a putative strongly oxidizing oxoiron(V) species. This mechanism is reminiscent to that observed in heme systems, where protonation of the hydroperoxo intermediate leads to the formation of the high‐valent [(Porph.)FeIV(O)] (Compound I)

    Bifunctional W/NH Cuboidal Aminophosphino W3S4 Cluster Hydrides: The Puzzling Behaviour behind the Hydridic-Protonic Interplay

    Get PDF
    The novel [W3S4H3(edpp)3]+ (edpp=(2-aminoethyl)diphenylphosphine) (1+) cluster hydride with an acidic −NH2 functionality has been synthetized and studied. Its crystal structure shows the characteristic incomplete W3S4 cubane core with the outer positions occupied by the P and N atoms of the edpp ligands. Although no signal due to the hydride ligands is observed in the 1H NMR spectrum, hydride assignment is supported by 1H-15N HSQC techniques, the changes in the 31P{1H} NMR chemical shift, and FT-IR spectra in the W−H region of the deuterated [W3S4D2H(edpp)3]+ (1+-d2) samples. Moreover, all NMR evidences suggest that one of the hydrogen atoms of the NH2 group in 1+ is rapidly exchanging with the hydride. The reaction of 1+ with acids (HCl, HBr and DCl) features complex polyphasic kinetics with zero-order dependence with respect to the acid concentration, being also independent of the solvent nature. This behavior differs from that of their diphosphino analogues, suggesting a different mechanism

    Characterization of a Ferryl Flip in Electronically Tuned Nonheme Complexes. Consequences in Hydrogen Atom Transfer Reactivity

    Get PDF
    Two oxoiron(IV) isomers (R2a and R2b) of general formula [FeIV(O)(RPyNMe3)(CH3CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4IO4. The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R2a and R2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R2a reacts one order of magnitude faster than R2b, which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R2b. Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand
    corecore