725 research outputs found
Progress in Three-Dimensional Coherent X-Ray Diffraction Imaging
The Fourier inversion of phased coherent diffraction patterns offers images
without the resolution and depth-of-focus limitations of lens-based tomographic
systems. We report on our recent experimental images inverted using recent
developments in phase retrieval algorithms, and summarize efforts that led to
these accomplishments. These include ab-initio reconstruction of a
two-dimensional test pattern, infinite depth of focus image of a thick object,
and its high-resolution (~10 nm resolution) three-dimensional image.
Developments on the structural imaging of low density aerogel samples are
discussed.Comment: 5 pages, X-Ray Microscopy 2005, Himeji, Japa
Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns
We reconstructed the 3D Fourier intensity distribution of mono-disperse
prolate nano-particles using single-shot 2D coherent diffraction patterns
collected at DESY's FLASH facility when a bright, coherent, ultrafast X-ray
pulse intercepted individual particles of random, unmeasured orientations. This
first experimental demonstration of cryptotomography extended the
Expansion-Maximization-Compression (EMC) framework to accommodate unmeasured
fluctuations in photon fluence and loss of data due to saturation or background
scatter. This work is an important step towards realizing single-shot
diffraction imaging of single biomolecules.Comment: 4 pages, 4 figure
Split-aperture laser pulse compressor design tolerant to alignment and line-density differences
This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.33.001902 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
An assessment of the resolution limitation due to radiation-damage in x-ray diffraction microscopy
X-ray diffraction microscopy (XDM) is a new form of x-ray imaging that is
being practiced at several third-generation synchrotron-radiation x-ray
facilities. Although only five years have elapsed since the technique was first
introduced, it has made rapid progress in demonstrating high-resolution
threedimensional imaging and promises few-nm resolution with much larger
samples than can be imaged in the transmission electron microscope. Both life-
and materials-science applications of XDM are intended, and it is expected that
the principal limitation to resolution will be radiation damage for life
science and the coherent power of available x-ray sources for material science.
In this paper we address the question of the role of radiation damage. We use a
statistical analysis based on the so-called "dose fractionation theorem" of
Hegerl and Hoppe to calculate the dose needed to make an image of a lifescience
sample by XDM with a given resolution. We conclude that the needed dose scales
with the inverse fourth power of the resolution and present experimental
evidence to support this finding. To determine the maximum tolerable dose we
have assembled a number of data taken from the literature plus some
measurements of our own which cover ranges of resolution that are not well
covered by reports in the literature. The tentative conclusion of this study is
that XDM should be able to image frozen-hydrated protein samples at a
resolution of about 10 nm with "Rose-criterion" image quality.Comment: 9 pages, 4 figure
Three-dimensional coherent X-ray diffraction imaging of a ceramic nanofoam: determination of structural deformation mechanisms
Ultra-low density polymers, metals, and ceramic nanofoams are valued for
their high strength-to-weight ratio, high surface area and insulating
properties ascribed to their structural geometry. We obtain the labrynthine
internal structure of a tantalum oxide nanofoam by X-ray diffractive imaging.
Finite element analysis from the structure reveals mechanical properties
consistent with bulk samples and with a diffusion limited cluster aggregation
model, while excess mass on the nodes discounts the dangling fragments
hypothesis of percolation theory.Comment: 8 pages, 5 figures, 30 reference
Exact field ionization rates in the barrier suppression-regime from numerical TDSE calculations
Numerically determined ionization rates for the field ionization of atomic
hydrogen in strong and short laser pulses are presented. The laser pulse
intensity reaches the so-called "barrier suppression ionization" regime where
field ionization occurs within a few half laser cycles. Comparison of our
numerical results with analytical theories frequently used shows poor
agreement. An empirical formula for the "barrier suppression ionization"-rate
is presented. This rate reproduces very well the course of the numerically
determined ground state populations for laser pulses with different length,
shape, amplitude, and frequency.
Number(s): 32.80.RmComment: Enlarged and newly revised version, 22 pages (REVTeX) + 8 figures in
ps-format, submitted for publication to Physical Review A, WWW:
http://www.physik.tu-darmstadt.de/tqe
Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser
Citation: Ekeberg, T., Svenda, M., Abergel, C., Maia, F., Seltzer, V., Claverie, J. M., . . . Hajdu, J. (2015). Three-Dimensional Reconstruction of the Giant Mimivirus Particle with an X-Ray Free-Electron Laser. Physical Review Letters, 114(9), 6. doi:10.1103/PhysRevLett.114.098102We present a proof-of-concept three-dimensional reconstruction of the giant mimivirus particle from experimentally measured diffraction patterns from an x-ray free-electron laser. Three-dimensional imaging requires the assembly of many two-dimensional patterns into an internally consistent Fourier volume. Since each particle is randomly oriented when exposed to the x-ray pulse, relative orientations have to be retrieved from the diffraction data alone. We achieve this with a modified version of the expand, maximize and compress algorithm and validate our result using new methods.Additional Authors: Andersson, I.;Loh, N. D.;Martin, A. V.;Chapman, H.;Bostedt, C.;Bozek, J. D.;Ferguson, K. R.;Krzywinski, J.;Epp, S. W.;Rolles, D.;Rudenko, A.;Hartmann, R.;Kimmel, N.;Hajdu, J
High-resolution ab initio three-dimensional X-ray diffraction microscopy
Coherent X-ray diffraction microscopy is a method of imaging non-periodic
isolated objects at resolutions only limited, in principle, by the largest
scattering angles recorded. We demonstrate X-ray diffraction imaging with high
resolution in all three dimensions, as determined by a quantitative analysis of
the reconstructed volume images. These images are retrieved from the 3D
diffraction data using no a priori knowledge about the shape or composition of
the object, which has never before been demonstrated on a non-periodic object.
We also construct 2D images of thick objects with infinite depth of focus
(without loss of transverse spatial resolution). These methods can be used to
image biological and materials science samples at high resolution using X-ray
undulator radiation, and establishes the techniques to be used in
atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte
Pulse compression and beam focusing with segmented diffraction gratings in a high-power chirped-pulse amplification glass laser system
This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.35.001783 Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law
Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser.
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology
- …
