5,471 research outputs found

    Effect of extreme data loss on long-range correlated and anti-correlated signals quantified by detrended fluctuation analysis

    Full text link
    We investigate how extreme loss of data affects the scaling behavior of long-range power-law correlated and anti-correlated signals applying the DFA method. We introduce a segmentation approach to generate surrogate signals by randomly removing data segments from stationary signals with different types of correlations. These surrogate signals are characterized by: (i) the DFA scaling exponent α\alpha of the original correlated signal, (ii) the percentage pp of the data removed, (iii) the average length Ό\mu of the removed (or remaining) data segments, and (iv) the functional form of the distribution of the length of the removed (or remaining) data segments. We find that the {\it global} scaling exponent of positively correlated signals remains practically unchanged even for extreme data loss of up to 90%. In contrast, the global scaling of anti-correlated signals changes to uncorrelated behavior even when a very small fraction of the data is lost. These observations are confirmed on the examples of human gait and commodity price fluctuations. We systematically study the {\it local} scaling behavior of signals with missing data to reveal deviations across scales. We find that for anti-correlated signals even 10% of data loss leads to deviations in the local scaling at large scales from the original anti-correlated towards uncorrelated behavior. In contrast, positively correlated signals show no observable changes in the local scaling for up to 65% of data loss, while for larger percentage, the local scaling shows overestimated regions (with higher local exponent) at small scales, followed by underestimated regions (with lower local exponent) at large scales. Finally, we investigate how the scaling is affected by the statistics of the remaining data segments in comparison to the removed segments

    Microscopic life stages of North Atlantic Laminaria digitata (Phaeophyceae) exhibit trait-depedent thermal adaptation along latitudes

    Get PDF
    Kelp forests in the North Atlantic are at risk of decline at their warm temperature distribution margins due to anthropogenic temperature rise and more frequent marine heat waves. To investigate the thermal adaptation of the cold-temperate kelp Laminaria digitata, we sampled six populations, from the Arctic to Brittany (Spitsbergen, Tromsþ, Bodþ [all Norway], Helgoland [Germany], Roscoff and Quiberon [both France]), across the species’ entire distribution range, spanning 31.5° latitude and 12-13°C difference in mean summer sea surface temperature. We used pooled vegetative gametophytes derived from several sporophytes to approximate the genetic diversity of each location. Gametophytes were exposed to (sub-) lethal high (20-25°C) and (sub-) optimal low (0-15°C) temperature gradients in two full-factorial, common-garden experiments, subjecting subsets of populations from different origins to the same conditions. We assessed survival of gametophytes, their ability to develop microscopic sporophytes, and subsequent growth. We hypothesized that the thermal performance of gametophytes and microscopic sporophytes corresponds to their local long-term thermal history. Integrated gametophyte survival revealed a uniform upper survival temperature (UST) of 24°C among five tested populations (Tromsþ to Quiberon). In contrast, following two weeks of thermal priming of gametophytes at 20-22°C, sporophyte formation at 15°C was significantly higher in southern populations (Quiberon and Roscoff) compared to the high-latitude population of Tromsþ. Between 0-15°C, survival of the Arctic population (Spitsbergen) was negatively correlated with increasing temperatures, while the southernmost population (Quiberon) showed the opposite. Thus, responses of survival at low, and sporophyte formation at high temperatures, support the concept of local adaption. On the other hand, sporophyte formation between 0-15°C peaked at 6-9°C in the Quiberon and at 9-12°C in the Spitsbergen population. Sporophyte growth rates (GR) both in length and width were similar for Spitsbergen, Tromsþ and Quiberon; all had maximum GRs at 12-15°C and low GRs at 0-6°C. Therefore, responses of sporophyte formation and growth at low temperatures do not reflect ecotypic adaptation. We conclude that L. digitata populations display trait-dependent adaptation, partly corresponding to their local temperature histories and partly manifesting uniform or unpredictable responses. This suggests differential selection pressures on the ontogenetic development of kelps such as L. digitata

    The Potential Trajectory of Carbapenem-Resistant Enterobacteriaceae, an Emerging Threat to Health-Care Facilities, and the Impact of the Centers for Disease Control and Prevention Toolkit.

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE), a group of pathogens resistant to most antibiotics and associated with high mortality, are a rising emerging public health threat. Current approaches to infection control and prevention have not been adequate to prevent spread. An important but unproven approach is to have hospitals in a region coordinate surveillance and infection control measures. Using our Regional Healthcare Ecosystem Analyst (RHEA) simulation model and detailed Orange County, California, patient-level data on adult inpatient hospital and nursing home admissions (2011-2012), we simulated the spread of CRE throughout Orange County health-care facilities under 3 scenarios: no specific control measures, facility-level infection control efforts (uncoordinated control measures), and a coordinated regional effort. Aggressive uncoordinated and coordinated approaches were highly similar, averting 2,976 and 2,789 CRE transmission events, respectively (72.2% and 77.0% of transmission events), by year 5. With moderate control measures, coordinated regional control resulted in 21.3% more averted cases (n = 408) than did uncoordinated control at year 5. Our model suggests that without increased infection control approaches, CRE would become endemic in nearly all Orange County health-care facilities within 10 years. While implementing the interventions in the Centers for Disease Control and Prevention's CRE toolkit would not completely stop the spread of CRE, it would cut its spread substantially, by half

    Acoustic and relaxation processes in supercooled o-ter-phenyl by optical-heterodyne transient grating experiment

    Full text link
    The dynamics of the fragile glass-forming o-ter-phenyl is investigated by time-resolved transient grating experiment with an heterodyne detection technique in a wide temperature range. We investigated the dynamics processes of this glass-former over more then 6 decades in time with an excellent signal/noise. Acoustic, structural and thermal relaxations have been clearly identify and measured in a time-frequency window not covered by previous spectroscopic investigations. A detailed comparison with the density response function, calculated on the basis of generalized hydrodynamics model, has been worked out

    Enhanced dielectronic recombination of lithium-like Ti19+ ions in external ExB fields

    Full text link
    Dielectronic recombination(DR) of lithium-like Ti19+(1s2 2s) ions via 2s->2p core excitations has been measured at the Heidelberg heavy ion storage ring TSR. We find that not only external electric fields (0 <= Ey <= 280 V/cm) but also crossed magnetic fields (30 mT <= Bz <= 80 mT) influence the DR via high-n (2p_j nl)-Rydberg resonances. This result confirms our previous finding for isoelectronic Cl14+ ions [Bartsch T et al, PRL 82, 3779 (1999)] that experimentally established the sensitivity of DR to ExB fields. In the present investigation the larger 2p_{1/2}-2p_{3/2} fine structure splitting of Ti19+ allowed us to study separately the influence of external fields via the two series of Rydberg DR resonances attached to the 2s -> 2p_{1/2} and 2s -> 2p_{3/2} excitations of the Li-like core, extracting initial slopes and saturation fields of the enhancement. We find that for Ey > 80 V/cm the field induced enhancement is about 1.8 times stronger for the 2p_{3/2} series than for the 2p_{1/2} series.Comment: 10 pages, 3 figures, to be published in Journal of Physics B, see also http://www.strz.uni-giessen.de/~k

    Symbiotic Bright Solitary Wave Solutions of Coupled Nonlinear Schrodinger Equations

    Full text link
    Conventionally, bright solitary wave solutions can be obtained in self-focusing nonlinear Schrodinger equations with attractive self-interaction. However, when self-interaction becomes repulsive, it seems impossible to have bright solitary wave solution. Here we show that there exists symbiotic bright solitary wave solution of coupled nonlinear Schrodinger equations with repulsive self-interaction but strongly attractive interspecies interaction. For such coupled nonlinear Schrodinger equations in two and three dimensional domains, we prove the existence of least energy solutions and study the location and configuration of symbiotic bright solitons. We use Nehari's manifold to construct least energy solutions and derive their asymptotic behaviors by some techniques of singular perturbation problems.Comment: to appear in Nonlinearit

    Topology and Homoclinic Trajectories of Discrete Dynamical Systems

    Get PDF
    We show that nontrivial homoclinic trajectories of a family of discrete, nonautonomous, asymptotically hyperbolic systems parametrized by a circle bifurcate from a stationary solution if the asymptotic stable bundles Es(+{\infty}) and Es(-{\infty}) of the linearization at the stationary branch are twisted in different ways.Comment: 19 pages, canceled the appendix (Properties of the index bundle) in order to avoid any text overlap with arXiv:1005.207

    The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana

    Get PDF
    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific ‘‘avirulent’’ pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NBLRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector
    • 

    corecore