438 research outputs found
Spectral function of the Anderson impurity model at finite temperatures
Using the functional renormalization group (FRG) and the numerical
renormalization group (NRG), we calculate the spectral function of the Anderson
impurity model at zero and finite temperatures. In our FRG scheme spin
fluctuations are treated non-perturbatively via a suitable Hubbard-Stratonovich
field, but vertex corrections are neglected. A comparison with our highly
accurate NRG results shows that this FRG scheme gives a quantitatively good
description of the spectral line-shape at zero and finite temperatures both in
the weak and strong coupling regimes, although at zero temperature the FRG is
not able to reproduce the known exponential narrowing of the Kondo resonance at
strong coupling.Comment: 6 pages, 3 figures; new references adde
Dynamic scaling in the vicinity of the Luttinger liquid fixed point
We calculate the single-particle spectral function A (k, omega) of a
one-dimensional Luttinger liquid by means of a functional renormalization group
(RG) approach. Given an infrared energy cutoff Lambda = Lambda_0 e^{- l}, our
approach yields the spectral function in the scaling form, A_{\Lambda} (k_F +
p, omega) = tau Z_l tilde{A}_l (p xi, omega tau), where k_F is the Fermi
momentum, Z_l is the wave-function renormalization factor, tau = 1 / \Lambda is
the time scale and xi = v_F / \Lambda is the length scale associated with
Lambda. At the Luttinger liquid fixed point (l rightarrow infty) our RG result
for A (k, omega) exhibits the correct anomalous scaling properties, and for k =
\pm k_F agrees exactly with the well-known bosonization result at weak
coupling. Our calculation demonstrates that the field rescaling is essential
for obtaining the crossover from Fermi liquid behavior to Luttinger liquid
behavior from a truncation of the hierarchy of exact RG flow equations as the
infrared cutoff is reduced.Comment: 15 pages, 5 figure
Reproducibility of lymphovascular space invasion (LVSI) assessment in endometrial cancer
Aims Lymphovascular space invasion (LVSI) in endometrial cancer (EC) is an important prognostic variable impacting on a patient's individual recurrence risk and adjuvant treatment recommendations. Recent work has shown that grading the extent of LVSI further improves its prognostic strength in patients with stage I endometrioid EC. Despite this, there is little information on the reproducibility of LVSI assessment in EC. Therefore, we designed a study to evaluate interobserver agreement in discriminating true LVSI from LVSI mimics (Phase I) and reproducibility of grading extent of LVSI (Phase II). Methods and results Scanned haematoxylin and eosin (H&E) slides of endometrioid EC (EEC) with a predefined possible LVSI focus were hosted on a website and assessed by a panel of six European gynaecological pathologists. In Phase I, 48 H&E slides were included for LVSI assessment and in Phase II, 42 H&E slides for LVSI grading. Each observer was instructed to apply the criteria for LVSI used in daily practice. The degree of agreement was measured using the two-way absolute agreement average-measures intraclass correlation coefficient (ICC). Reproducibility of LVSI assessment (ICC = 0.64, P < 0.001) and LVSI grading (ICC = 0.62, P < 0.001) in EEC was substantial among the observers. Conclusions Given the good reproducibility of LVSI, this study further supports the important role of LVSI in decision algorithms for adjuvant treatment
Density of states in d-wave superconductors disordered by extended impurities
The low-energy quasiparticle states of a disordered d-wave superconductor are
investigated theoretically. A class of such states, formed via tunneling
between the Andreev bound states that are localized around extended impurities
(and result from scattering between pair-potential lobes that differ in sign)
is identified. Its (divergent) contribution to the total density of states is
determined by taking advantage of connections with certain one-dimensional
random tight-binding models. The states under discussion should be
distinguished from those associated with nodes in the pair potential.Comment: 5 pages, 1 figur
Reconstruction of the Fermi surface in the pseudogap state of cuprates
Reconstruction of the Fermi surface of high-temperature superconducting
cuprates in the pseudogap state is analyzed within nearly exactly solvable
model of the pseudogap state, induced by short-range order fluctuations of
antiferromagnetic (AFM, spin density wave (SDW), or similar charge density wave
(CDW)) order parameter, competing with superconductivity. We explicitly
demonstrate the evolution from "Fermi arcs" (on the "large" Fermi surface)
observed in ARPES experiments at relatively high temperatures (when both the
amplitude and phase of density waves fluctuate randomly) towards formation of
typical "small" electron and hole "pockets", which are apparently observed in
de Haas - van Alfen and Hall resistance oscillation experiments at low
temperatures (when only the phase of density waves fluctuate, and correlation
length of the short-range order is large enough). A qualitative criterion for
quantum oscillations in high magnetic fields to be observable in the pseudogap
state is formulated in terms of cyclotron frequency, correlation length of
fluctuations and Fermi velocity.Comment: 4 pages, 3 figure
Some remarks about pseudo gap behavior of nearly antiferromagnetic metals
In the antiferromagnetically ordered phase of a metal, gaps open on parts of
the Fermi surface if the Fermi volume is sufficiently large. We discuss simple
qualitative and heuristic arguments under what conditions precursor effects,
i.e. pseudo gaps, are expected in the paramagnetic phase of a metal close to an
antiferromagnetic quantum phase transition. At least for weak interactions, we
do not expect the formation of pseudo gaps in a three dimensional material.
According to our arguments, the upper critical dimension d_c for the formation
of pseudo gaps is d_c=2. However, at the present stage we cannot rule out a
higher upper critical dimension, 2 < d_c <= 3. We also discuss briefly the role
of statistical interactions in pseudo gap phases.Comment: 6 pages, accepted in PRB, relevant references added, several small
change
CLASH-VLT: Environment-driven evolution of galaxies in the z=0.209 cluster Abell 209
The analysis of galaxy properties and the relations among them and the
environment, can be used to investigate the physical processes driving galaxy
evolution. We study the cluster A209 by using the CLASH-VLT spectroscopic data
combined with Subaru photometry, yielding to 1916 cluster members down to a
stellar mass of 10^{8.6} Msun. We determine: i) the stellar mass function of
star-forming and passive galaxies; ii) the intra-cluster light and its
properties; iii) the orbits of low- and high-mass passive galaxies; and iv) the
mass-size relation of ETGs. The stellar mass function of the star-forming
galaxies does not depend on the environment, while the slope found for passive
galaxies becomes flatter in the densest region. The color distribution of the
intra-cluster light is consistent with the color of passive members. The
analysis of the dynamical orbits shows that low-mass passive galaxies have
tangential orbits, avoiding small pericenters around the BCG. The mass-size
relation of low-mass passive ETGs is flatter than that of high mass galaxies,
and its slope is consistent with that of field star-forming galaxies. Low-mass
galaxies are also more compact within the scale radius of 0.65 Mpc. The ratio
between stellar and number density profiles shows a mass segregation in the
center. The comparative analysis of the stellar and total density profiles
indicates that this effect is due to dynamical friction. Our results are
consistent with a scenario in which the "environmental quenching" of low-mass
galaxies is due to mechanisms such as harassment out to R200, starvation and
ram-pressure stripping at smaller radii, as supported by the analysis of the
mass function, of the dynamical orbits and of the mass-size relation of passive
early-types in different regions. Our analyses support the idea that the
intra-cluster light is formed through the tidal disruption of subgiant
galaxies.Comment: 17 pages, 20 figures, A&A in pres
Anyons in a weakly interacting system
We describe a theoretical proposal for a system whose excitations are anyons
with the exchange phase pi/4 and charge -e/2, but, remarkably, can be built by
filling a set of single-particle states of essentially noninteracting
electrons. The system consists of an artificially structured type-II
superconducting film adjacent to a 2D electron gas in the integer quantum Hall
regime with unit filling fraction. The proposal rests on the observation that a
vacancy in an otherwise periodic vortex lattice in the superconductor creates a
bound state in the 2DEG with total charge -e/2. A composite of this
fractionally charged hole and the missing flux due to the vacancy behaves as an
anyon. The proposed setup allows for manipulation of these anyons and could
prove useful in various schemes for fault-tolerant topological quantum
computation.Comment: 7 pages with 3 figures. For related work and info visit
http://www.physics.ubc.ca/~fran
Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals
HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization
An Exactly Solvable Model of N Coupled Luttinger Chains
We calculate the exact Green function of a special model of N coupled
Luttinger chains with arbitrary interchain hopping t_{perp}. The model is
exactly solvable via bosonization if the interchain interaction does not fall
off in the direction perpendicular to the chains. For any finite N we find
Luttinger liquid behavior and explicitly calculate the anomalous dimension
gamma^(N). However, the Luttinger liquid state does not preclude coherent
interchain hopping. We also show that gamma^(N) -> 0 for N -> infinity, so that
in the limit of infinitely many chains we obtain a Fermi liquid.Comment: accepted for publication in Phys. Rev.
- …
