126 research outputs found

    Forming Young Bulges within Existing Disks: Statistical Evidence for External Drivers

    Full text link
    Contrary to traditional models of galaxy formation, recent observations suggest that some bulges form within preexisting disk galaxies. Such late-epoch bulge formation within disks seems to be linked to disk gas inflow and central star formation, caused by either internal secular processes or galaxy mergers and interactions. We identify a population of galaxies likely to be experiencing active bulge growth within disks, using the criterion that the color within the half-light radius is bluer than the outer disk color. Such blue-centered galaxies make up >10% of star-forming disk galaxies within the Nearby Field Galaxy Survey, a broad survey designed to represent the natural diversity of the low-z galaxy population over a wide range of luminosities and environments. Blue-centered galaxies correlate at 99% confidence with morphological peculiarities suggestive of minor mergers and interactions. From this and other evidence, we argue that external drivers rather than internal secular processes probably account for the majority of blue-centered galaxies. We go on to discuss quantitative plausibility arguments indicating that blue-centered evolutionary phases may represent an important mode of bulge growth for most disk galaxies, leading to significant changes in bulge-to-disk ratio without destroying disks. If this view is correct, bulge growth within disks may be a natural consequence of the repeated galaxy mergers and interactions inherent in hierarchical galaxy formation.Comment: 18 pages including 12 figures, AJ, accepte

    Rotation Curve Measurement using Cross-Correlation

    Get PDF
    Longslit spectroscopy is entering an era of increased spatial and spectral resolution and increased sample size. Improved instruments reveal complex velocity structure that cannot be described with a one-dimensional rotation curve, yet samples are too numerous to examine each galaxy in detail. Therefore, one goal of rotation curve measurement techniques is to flag cases in which the kinematic structure of the galaxy is more complex than a single-valued curve. We examine cross-correlation as a technique that is easily automated and works for low signal-to-noise spectra. We show that the technique yields well-defined errors which increase when the simple spectral model (template) is a poor match to the data, flagging those cases for later inspection. We compare the technique to the more traditional, parametric technique of simultaneous emission line fitting. When the line profile at a single slit position is non-Gaussian, the techniques disagree. For our model spectra with two well-separated velocity components, assigned velocities from the two techniques differ by up to ~52% of the velocity separation of the model components. However, careful use of the error statistics for either technique allows one to flag these non-Gaussian spectra.Comment: LaTeX document with 26 pages, including 12 figures; published in PAS

    Cdkn1c (p57Kip2) is the major regulator of embryonic growth within its imprinted domain on mouse distal chromosome 7

    Get PDF
    Background: Cdkn1c encodes an embryonic cyclin-dependant kinase inhibitor that acts to negatively regulate cell proliferation and, in some tissues, to actively direct differentiation. This gene, which is an imprinted gene expressed only from the maternal allele, lies within a complex region on mouse distal chromosome 7, called the IC2 domain, which contains several other imprinted genes. Studies on mouse embryos suggest a key role for genomic imprinting in regulating embryonic growth and this has led to the proposal that imprinting evolved as a consequence of the mismatched contribution of parental resources in mammals. Results: In this study, we characterised the phenotype of mice carrying different copy number integrations of a bacterial artificial chromosome spanning Cdkn1c. Excess Cdkn1c resulted in embryonic growth retardation that was dosage-dependent and also responsive to the genetic background. Two-fold expression of Cdkn1c in a subset of tissues caused a 10–30% reduction in embryonic weight, embryonic lethality and was associated with a reduction in the expression of the potent, non-imprinted embryonic growth factor, Igf1. Conversely, loss of expression of Cdkn1c resulted in embryos that were 11% heavier with a two-fold increase in Igf1. Conclusion: We have shown that embryonic growth in mice is exquisitely sensitive to the precise dosage of Cdkn1c. Cdkn1c is a maternally expressed gene and our findings support the prediction of the parental conflict hypothesis that that the paternal genome silences genes that have an inhibitory role in embryonic growth. Within the IC2 imprinted domain, Cdkn1c encodes the major regulator of embryonic growth and we propose that Cdkn1c was the focal point of the selective pressure for imprinting of this domain

    E/S0 Galaxies on the Blue Color-Stellar Mass Sequence at z=0: Fading Mergers or Future Spirals?

    Get PDF
    We identify a population of morphologically defined E/S0 galaxies lying on the blue sequence at the present epoch. Using three samples, we analyze blue-sequence E/S0s with stellar masses >10^8 Msun, arguing that individual objects may be evolving either up toward the red sequence or down into the blue sequence. Blue-sequence E/S0 galaxies become more common with decreasing stellar mass, comprising <2% of E/S0s near the "shutdown mass" M_s ~ 1-2 x 10^11 Msun, increasing to >5% near the "bimodality mass" M_b ~ 3 x 10^10 Msun, and sharply rising to >20-30% below the "threshold mass" M_t ~ 4-6 x 10^9 Msun. The strong emergence of blue-sequence E/S0s below M_t coincides with a previously reported global increase in mean atomic gas fractions below M_t for galaxies of all types on both sequences, suggesting that the availability of cold gas may be basic to blue-sequence E/S0s' existence. Environmental analysis reveals that many sub-M_b blue-sequence E/S0s reside in low to intermediate density environments. In mass-radius and mass-sigma scaling relations, blue-sequence E/S0s are more similar to red-sequence E/S0s than to late-type galaxies, but they represent a transitional class. While some of them, especially in the high-mass range from M_b to M_s, resemble major-merger remnants that will likely fade onto the red sequence, most blue-sequence E/S0s below M_b show signs of disk and/or pseudobulge building, which may be enhanced by companion interactions. We argue that sub-M_b blue-sequence E/S0s occupy a "sweet spot" in stellar mass and concentration, with both abundant gas and optimally efficient star formation, which may enable the formation of large spiral disks. [abridged]Comment: AJ, submitted, revised, 21 pages with 15 figures (one in two parts, one color); full resolution version available at http://www.physics.unc.edu/~sheila/kgb.pd

    Associations between genetic obesity susceptibility and early postnatal fat and lean mass: an individual participant meta-analysis

    Get PDF
    IMPORTANCE: Patterns of body size and body composition associated with genetic obesity susceptibility inform the mechanisms that increase obesity risk. OBJECTIVE: To test associations between genetic obesity susceptibility, represented by a combined obesity risk-allele score, and body size or body composition at birth to age 5 years. DESIGN, SETTING, AND PARTICIPANTS: A total of 3031 children from 4 birth cohort studies in England, France, and Spain were included in a meta-analysis. EXPOSURES: A combined obesity risk-allele score was calculated from genotypes at 16 variants identified by genome-wide association studies of adult body mass index (BMI). MAIN OUTCOMES AND MEASURES: Outcomes were age- and sex-adjusted SD scores (SDS) for weight, length/height, BMI, fat mass, lean mass, and percentage of body fat at birth as well as at ages 1, 2 to 3, and 4 to 5 years. RESULTS: The obesity risk-allele score was not associated with infant size at birth; at age 1 year it was positively associated with weight (β [SE], 0.020 [0.008] SDS per allele; P = .009) and length (β [SE], 0.020 [0.008] SDS per allele; P = .01), but not with BMI (β [SE], 0.013 [0.008] SDS per allele; P = .11). At age 2 to 3 years these associations were stronger (weight: β [SE], 0.033 [0.008] SDS per allele; P  .15 at all ages). CONCLUSIONS AND RELEVANCE: Genetic obesity susceptibility appears to promote a normally partitioned increase in early postnatal, but not prenatal, growth. These findings suggest that symmetrical rapid growth may identify infants with high life-long susceptibility for obesity

    UBVRI Light Curves of 44 Type Ia Supernovae

    Get PDF
    We present UBVRI photometry of 44 type-Ia supernovae (SN Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SN Ia to date, nearly doubling the number of well-observed, nearby SN Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SN Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U-B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to B-band.Comment: 84 authors, 71 pages, 51 tables, 10 figures. Accepted for publication in the Astronomical Journal. Version with high-res figures and electronic data at http://astron.berkeley.edu/~saurabh/cfa2snIa

    Altered H19/miR‐675 expression in skeletal muscle is associated with low muscle mass in community‐dwelling older adults

    Get PDF
    Background: Despite increasing knowledge of the pathogenesis of muscle ageing, the molecular mechanisms are poorly understood. Based on an expression analysis of muscle biopsies from older Caucasian men, we undertook an in-depth analysis of the expression of the long non-coding RNA, H19, to identify molecular mechanisms that may contribute to the loss of muscle mass with age. Methods: We carried out transcriptome analysis of vastus lateralis muscle biopsies from 40 healthy Caucasian men aged 68–76 years from the Hertfordshire Sarcopenia Study (HSS) with respect to appendicular lean mass adjusted for height (ALMi). Validation and replication was carried out using qRT-PCR in 130 independent male and female participants aged 73–83 years recruited into an extension of the HSS (HSSe). DNA methylation was assessed using pyrosequencing. Results: Lower ALMi was associated with higher muscle H19 expression (r2 = 0.177, P < 0.001). The microRNAs, miR-675-5p/3p encoded by exon 1 of H19, were positively correlated with H19 expression (Pearson r = 0.192 and 0.182, respectively, P < 0.03), and miR-675-5p expression negatively associated with ALMi (r2 = 0.629, P = 0.005). The methylation of CpGs within the H19 imprinting control region (ICR) were negatively correlated with H19 expression (Pearson r = −0.211 to −0.245, P ≤ 0.05). Moreover, RNA and protein levels of SMAD1 and 5, targets of miR-675-3p, were negatively associated with miR-675-3p (r2 = 0.792 and 0.760, respectively) and miR-675-5p (r2 = 0.584 and 0.723, respectively) expression, and SMAD1 and 5 RNA levels positively associated with greater type II fibre size (r2 = 0.184 and 0.246, respectively, P < 0.05). Conclusions: Increased expression profiles of H19/miR-675-5p/3p and lower expression of the anabolic SMAD1/5 effectors of bone morphogenetic protein (BMP) signalling are associated with low muscle mass in older individuals

    Response to Antenatal Cholecalciferol Supplementation Is Associated With Common Vitamin D-Related Genetic Variants.

    Get PDF
    Context: Single-nucleotide polymorphisms (SNPs) in genes related to vitamin D metabolism have been associated with serum 25-hydroxyvitamin D [25(OH)D] concentration, but these relationships have not been examined following antenatal cholecalciferol supplementation. Objective: To determine whether SNPs in DHCR7, CYP2R1, CYP24A1, and GC are associated with the response to gestational cholecalciferol supplementation. Design: Within-randomization group analysis of the Maternal Vitamin D Osteoporosis Study trial of antenatal cholecalciferol supplementation. Setting: Hospital antenatal clinics. Participants: In total, 682 women of white ethnicity (351 placebo, 331 cholecalciferol) were included. SNPs at rs12785878 (DHCR7), rs10741657 (CYP2R1), rs6013897 (CYP24A1), and rs2282679 (GC) were genotyped. Interventions: 1000 IU/d cholecalciferol from 14 weeks of gestation until delivery. Main Outcome Measure: 25(OH)D at randomization and 34 weeks of gestation were measured in a single batch (Liaison; Diasorin, Dartford, UK). Associations between 25(OH)D and the SNPs were assessed by linear regression using an additive model [β represents the change in 25(OH)D per additional common allele]. Results: Only rs12785878 (DHCR7) was associated with baseline 25(OH)D [β = 3.1 nmol/L; 95% confidence interval (CI), 1.0 to 5.2 nmol/L; P < 0.004]. In contrast, rs10741657 (CYP2R1) (β = -5.2 nmol/L; 95% CI, -8.2 to -2.2 nmol/L; P = 0.001) and rs2282679 (GC) (β = 4.2 nmol/L; 95% CI, 0.9 to 7.5 nmol/L; P = 0.01) were associated with achieved 25(OH)D status following supplementation, whereas rs12785878 and rs6013897 (CYP24A1) were not. Conclusions: Genetic variation in DHCR7, which encodes 7-dehyrocholesterol reductase in the epidermal vitamin D biosynthesis pathway, appears to modify baseline 25(OH)D. In contrast, the response to antenatal cholecalciferol supplementation was associated with SNPs in CYP2R1, which may alter 25-hydroxylase activity, and GC, which may affect vitamin D binding protein synthesis or metabolite affinity
    corecore