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Context: Single-nucleotide polymorphisms (SNPs) in genes related to vitamin D metabolism have
been associated with serum 25-hydroxyvitamin D [25(OH)D] concentration, but these relationships
have not been examined following antenatal cholecalciferol supplementation.

Objective: To determine whether SNPs inDHCR7, CYP2R1, CYP24A1, andGC are associated with the
response to gestational cholecalciferol supplementation.

Design:Within-randomization group analysis of theMaternal Vitamin DOsteoporosis Study trial of
antenatal cholecalciferol supplementation.

Setting: Hospital antenatal clinics.

Participants: In total, 682womenofwhite ethnicity (351 placebo, 331 cholecalciferol) were included.
SNPs at rs12785878 (DHCR7), rs10741657 (CYP2R1), rs6013897 (CYP24A1), and rs2282679 (GC) were
genotyped.

Interventions: 1000 IU/d cholecalciferol from 14 weeks of gestation until delivery.

Main OutcomeMeasure: 25(OH)D at randomization and 34 weeks of gestation were measured in a
single batch (Liaison; Diasorin, Dartford, UK). Associations between 25(OH)D and the SNPs were
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assessed by linear regression using an additive model [b represents the change in 25(OH)D per
additional common allele].

Results: Only rs12785878 (DHCR7) was associated with baseline 25(OH)D [b = 3.1 nmol/L; 95%
confidence interval (CI), 1.0 to 5.2 nmol/L; P , 0.004]. In contrast, rs10741657 (CYP2R1) (b =
25.2 nmol/L; 95% CI, 28.2 to 22.2 nmol/L; P = 0.001) and rs2282679 (GC) (b = 4.2 nmol/L; 95% CI, 0.9
to 7.5 nmol/L; P = 0.01) were associated with achieved 25(OH)D status following supplementation,
whereas rs12785878 and rs6013897 (CYP24A1) were not.

Conclusions: Genetic variation in DHCR7, which encodes 7-dehyrocholesterol reductase in the
epidermal vitamin D biosynthesis pathway, appears to modify baseline 25(OH)D. In contrast, the
response to antenatal cholecalciferol supplementation was associated with SNPs in CYP2R1, which
may alter 25-hydroxylase activity, and GC, which may affect vitamin D binding protein synthesis or
metabolite affinity. (J Clin Endocrinol Metab 102: 2941–2949, 2017)

Antenatal vitamin D supplementation is now rec-
ommended for all pregnantwomen inmany national

guidelines (1–3) as severe maternal vitamin D deficiency
can result in symptomatic neonatal hypocalcemia (4).
Furthermore, associations between maternal vitamin D
status and obstetric complications (4) and offspring
musculoskeletal development (5–7) have been reported.

Risk factors for vitamin D deficiency, in addition to
geographic and seasonal variation, are well established.
These include ethnicity, extent of skin covering, liberal
use of sun protection, adiposity, and age. It is also in-
creasingly recognized that genetic variation influences
25-hydroxyvitamin D [25(OH)D] status. In a previous
genome-wide association study (GWAS), we demon-
strated that a number of single-nucleotide polymorphisms
(SNPs) in or near to genes encoding key components of
the vitamin D metabolism pathway are associated with
serum25(OH)D level (8). These includeDHCR7 encoding
7-dehydrocholesterol (7-DHC) reductase; CYP2R1 and
CYP24A1 encoding 25-hydroxylase and 24-hydroxylase,
respectively; and GC encoding vitamin D binding protein
(VDP). Several of these SNPs have been associated with
the serum 25(OH)D increase in response to vitamin D
supplementation in small studies (9–11).

Pregnancy is a physiologically unique period, in-
volving hemodilution and hormonal and metabolic
changes. For example, VDP rises early in pregnancy, and
1,25-dihydroxyvitamin D increases during the second
and third trimesters (12). Supplementation with chole-
calciferol increases maternal serum 25(OH)D concen-
tration (7), and we have previously demonstrated that the
25(OH)D achieved in response to supplementation in
pregnancy is associated with pregnancy weight gain,
compliance, and baseline 25(OH)D (13). In the previous
study, in contrast to data from nonpregnant adults,
baseline body mass index (BMI), measures of adiposity,
and maternal age were not associated with response
to cholecalciferol supplementation in pregnancy (13).
Considering this and the physiological changes to the

vitamin D pathway in pregnancy, it is therefore possible
that the genetic variants associated with baseline serum
25(OH)D status and the response to supplementation
also differ between the pregnant and nonpregnant state.
We therefore undertook this study to determine whether
SNPs within the vitamin D metabolism pathway known
to modify vitamin D status are also associated with the
response to antenatal vitamin D supplementation.

Materials and Methods

The Maternal Vitamin D Osteoporosis Study
The Maternal Vitamin D Osteoporosis Study is a multi-

center, double-blind, randomized, placebo-controlled trial of
vitamin D supplementation in pregnancy. The primary outcome
was neonatal bone mass. A detailed description of the study
methods (14) and primary findings have been published pre-
viously (7). The study was approved by the Southampton and
South West Hampshire Research Ethics Committee. The Ma-
ternal Vitamin D Osteoporosis Study was registered pro-
spectively (ISRCTN:82927713; EUDRACT:2007-001716-23);
full approval from UK Medicines and Healthcare Products
Regulatory Agency was granted, and written, informed consent
was obtained from all participants.

Briefly, women attending one of three UK hospitals [Uni-
versity Hospital Southampton National Health Service (NHS)
Foundation Trust, Southampton, UK (latitude 50.9° North);
Oxford University Hospitals NHS Foundation Trust, Oxford,
UK (latitude 51.8° North); Sheffield Hospitals NHS Trust
(University of Sheffield), Sheffield, UK (latitude 53.4° North)]
for early pregnancy ultrasound screening (11 to 14 weeks of
gestation) between 6 October 2008 and 11 February 2014 were
invited to participate in the study. Inclusion criteria were as
follows: age older than 18 years, singleton pregnancy, and
gestation less than 17 weeks based on last menstrual period and
ultrasound measurements. Women with knownmetabolic bone
disease, renal stones, hyperparathyroidism or hypercalciuria,
those taking medication known to interfere with fetal growth,
fetal anomalies on ultrasonography, and women already us-
ing .400 IU/d vitamin D supplementation were excluded. A
screening blood sample was obtained and analyzed on the local
NHS platform [all three laboratories (Southampton, Oxford,
and Sheffield) participate in the Vitamin D External Quality
Assessment Scheme (http://www.deqas.org/)]. Women with
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25(OH)D between 25 and 100 nmol/L and serum calcium
,2.75 mmol/L were eligible to enroll fully in the study.

Participants were randomized to either cholecalciferol
1000 IU/d or matched placebo [Merck KGaA, Darmstadt,
Germany/Sharp Clinical Services, Crickhowell, United King-
dom (previously DHP-Bilcare)], which was commenced before
17 weeks of gestation. Packs of study treatment were ran-
domly assigned in a 1:1 ratio by Sharp Clinical Services by
a computer-generated sequence in randomly permuted blocks
of 10, starting randomly midway through the block, and se-
quentially numbered, before delivery to the study sites, and then
dispensed in order by each study pharmacist. The study med-
ication was provided in a blister pack in a single box containing
all medication for the whole pregnancy. The participants, in-
dividuals providing antenatal and intrapartum care, and all field
researchers involved in data collection and sample analysis were
blinded to the assignment to the intervention. All participants
received standard antenatal care and could continue self-
administration of dietary supplements containing up to 400
IU/d vitamin D.

Maternal assessments during pregnancy
Prior to commencing the study medication and again at

34 weeks of gestation, the women attended the research center
for a detailed assessment of diet (including supplement use),
lifestyle (smoking, physical activity participation, employ-
ment), and health (medical history, current medication use)
using interviewer-led questionnaires. Ethnicity was reported
by the participant and subsequently categorized as white
or nonwhite.

Anthropometric measurements included height, measured to
the nearest 0.1 cm using a stadiometer, and weight, assessed to
the nearest 0.1 kg using calibrated electronic scales. Pregnancy
weight gainwas calculated as the difference between theweights
at commencing the study medication and at 34 weeks of
gestation.

Compliance with study medication was assessed by asking
participants to bring any remaining study medication to each
assessment. The pills were counted and compliance calculated
as the number consumed divided by the expected consumption
based on the number of days since themedicationwas dispensed
and expressed as a percentage.

Assessment of 25(OH)D
On the day that the study medication was dispensed and at

34 weeks of gestation, a nonfasted venous blood sample was
obtained and serum stored at 280°C. 25(OH)D concentration
was assessed by chemiluminescence immunoassay (Liaison
automated platform; Diasorin, Dartford, UK). All samples were
analyzed in a single batch at the end of the study at Medical
Research Council Human Nutrition Research (Cambridge,
United Kingdom). Details of assay performance and quality
control through participation in Vitamin D External Quality
Assessment Scheme, National Institute of Standards and
Technology, and UK National External Quality Assessment
Service are given elsewhere (15, 16).

Analysis of SNPs
Genotyping was undertaken by LGC Genomics (Hoddeston,

UK) using KASP competitive allele-specific polymerase chain
reaction. SNPs selected for analysis were based on the

findings of a previous GWAS (8). These were rs12785878
(DHCR7), rs10741657 (CYP2R1), rs6013897 (CYP24A1),
and rs2282679 (GC).

Statistical analysis
Womenwho had ameasurement of 25(OH)D at both 14 and

34 weeks of gestation, had genetic analysis, and delivered a live-
born infant were included in the analysis. The SNPs included in
this analysis were chosen based on findings in the previous
GWAS, which included only individuals of European ancestry
(8).We therefore limited our study population to onlywomen of
white ethnicity (95.8% of eligible women).

All outcomes were assessed for normality using visual in-
spection. Serum 25(OH)D concentrations at 14 and 34weeks of
gestation were normally distributed. Characteristics of the
women in the two treatment arms were compared using the
t test, Mann-Whitney U test, and x2 test for normally distrib-
uted, nonnormally distributed, and categorical variables, re-
spectively. All participants were analyzed in the group to which
they were originally randomized.

Linear regression was used to examine the association
between the four SNPs and the outcomes using an additive
model with the homozygous low-frequency allele (for this
cohort) as the reference group. The additive model thus ex-
presses the change in outcome per additional common allele.
The outcomes assessedwere 25(OH)D at 14weeks of gestation
in all study participants and the achieved 25(OH)D at
34 weeks of gestation in the participants randomized to
cholecalciferol. In addition, in women randomized to chole-
calciferol, we assessed the relationship between the SNPs and
the change in vitamin D using the residuals of 25(OH)D at
34 weeks of gestation regressed on 25(OH)D at 14 weeks of
gestation as the outcome. Multivariate linear regression was
then used to adjust for relevant confounders. Maternal age,
BMI, physical activity and smoking status at 14 weeks of
gestation, educational attainment, and season of blood mea-
surement were included in the model for baseline 25(OH)D as
these have been shown to be associated with serum 25(OH)D
status in pregnancy (17–21). For the models for the 25(OH)D
achieved at 34 weeks of gestation, compliance with study
medication, baseline 25(OH)D, and pregnancy weight gain
(instead of BMI) were also included as we have previously
demonstrated in this cohort of women that these factors are
associated with the response to cholecalciferol supplementa-
tion (13). Seasons were defined according to the UK Meteo-
rological Office recommendations (www.metoffice.gov.uk)
with winter (December to February), spring (March to May),
summer (June to August), and autumn (September to No-
vember). As four SNPs were assessed, a Bonferroni correction
was used to account for multiple testing. We also undertook
sensitivity analysis in which women who reported having
taken any additional vitamin D–containing supplements
within 90 days of the late-pregnancy blood sampling
were excluded.

Finally, to determine the combined effects of SNPs, a ge-
notype risk score (GRS) was calculated as the sum of the
number of risk alleles at rs10741657 (G) and rs2282679 (C),
as identified in the previous analysis. The GRS score ranged
from 0 to 4, with a score of 0 representing no risk alleles.
Multivariate linear regression was used to determine the as-
sociation of GRS with 25(OH)D, using the same confounding
factors as before.
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All analyses were performed in Stata v14.2 (StataCorp,
College Station, TX). A P value of ,0.05 was considered sta-
tistically significant.

Results

In total, 682 women were included in the analysis (Fig. 1).
Womenwho delivered a live-born infant butwhowere not
included in this analysis due to missing 25(OH)D or ge-
netic analysis were of similar age, smoking status, and
BMI to those included in the analysis (P . 0.05 for all).
Baseline characteristics of the women randomized to
placebo and cholecalciferol were similar (Table 1). The

distributions of alleles within the SNPs of interest were
also similar between the two groups (Table 1).

25(OH)D was similar at baseline between the two
groups but significantly higher in the women randomized
to cholecalciferol at 34 weeks of gestation [mean (stan-
dard deviation), 67.3 (20.8) nmol/L] compared with
placebo [mean (standard deviation), 43.0 (22.2) nmol/L,
P , 0.001].

Associations with baseline 25(OH)D
Among all 682 women, the common allele (T) of

rs12785878 (DHCR7) was associated with greater
baseline serum 25(OH)D concentration (Table 2). This

Figure 1. Consolidated Standards of Reporting Trials diagram.
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association persisted in multivariate analysis adjusting
for maternal age, BMI, smoking status, physical activity,
educational achievement and season of blood sampling
[b = 3.1 nmol/L per T allele; 95% confidence interval
(CI), 1.0 to 5.2 nmol/L; P = 0.016]. There were no sta-
tistically significant associations between the SNPs at
rs10741657 (CYP2R1), rs6013897 (CYP24A1), and
rs2282679 (GC) and baseline 25(OH)D in the fully
adjusted model (Table 2).

Associations with 25(OH)D
following supplementation

In women who were randomized to cholecalciferol
supplements, the common G allele of rs10741657
(CYP2R1) was associated with lower serum 25(OH)D
concentration at 34 weeks of gestation, whereas the

common A allele of rs2282679 (GC) was associated with
greater 34-week serum 25(OH)D (Table 3). These as-
sociations persisted after adjustment for potential con-
founding factors (maternal age, physical activity, and
smoking status at 14 weeks of gestation; educational
attainment; season of blood measurement; compliance
with study medication; baseline 25(OH)D; and preg-
nancy weight gain). There were no significant associa-
tions between the SNPs at rs12785878 (DHCR7) and
rs6013897 (CYP24A1) and 25(OH)D at 34 weeks of
gestation (Table 3). When both rs10741657 (CYP2R1)
(b = 25.0 nmol/L per G allele; 95% CI, 28.0 to
21.9 nmol/L per G allele; P = 0.001) and rs2282679 (GC)
(b = 3.8 nmol/L per A allele; 95%CI, 0.6 to 7.1 nmol/L per
A allele; P = 0.021) were included simultaneously in a
regression model with confounders, the effect sizes were

Table 1. Characteristics of Women Included in the Analysis

Characteristic Placebo (n = 351) Cholecalciferol 1000 IU/d (n = 331)

Age (years), mean (SD) 30.8 (5.4) 30.8 (5.0)
Current smoking, n (%) 29 (8.3) 24 (7.3)
Educational attainment$A level (high school), n (%) 258 (74.4) 264 (80.0)
BMI (kg/m2), median (IQR) 25.5 (23.0 to 29.7) 24.7 (22.3 to 29.3)
Pregnancy weight gain (kg), mean (SD) 9.5 (3.6) 9.5 (3.4)
Strenuous exercise $ once per week, n (%) 45 (13.8) 50 (16.2)
25(OH)D at 14 weeks (nmol/L), mean (SD) 45.4 (16.5) 46.1 (17.0)
rs12785878 (DHCR7), n (%)
G:G 17 (4.8) 14 (4.3)
T:G 114 (32.5) 120 (36.6)
T:T 220 (62.7) 194 (59.1)

rs10741657 (CYP2R1), n (%)
A:A 57 (16.6) 51 (15.5)
G:A 156 (45.3) 148 (45.1)
G:G 131 (38.1) 129 (39.3)

rs6013897 (CYP24A1), n (%)
A:A 10 (2.9) 15 (4.6)
T:A 126 (36.5) 102 (31.4)
T:T 209 (60.6) 208 (64.0)

rs2282679 (GC), n (%)
C:C 37 (10.6) 34 (10.3)
C:A 149 (42.6) 136 (41.3)
A:A 164 (46.9) 159 (48.3)

Abbreviation: IQR, interquartile range.

Table 2. Association of SNPs With Baseline 25(OH)D in Early Pregnancy

SNP
Reference
Allele

Common
Allele

Univariate Adjusteda

Corrected P Valuebn b (95% CI) P Value n b (95% CI) P Value

rs12785878 (DHCR7) G T 679 3.7 (1.5 to 5.8) 0.001 622 3.1 (1.0 to 5.2) 0.004 0.012
rs10741657 (CYP2R1) A G 672 21.1 (22.9 to 0.7) 0.24 616 21.4 (23.2 to 0.4) 0.12 0.47
rs6013897 (CYP24A1) A T 670 1.2 (21.1 to 3.4) 0.31 613 0.8 (21.4 to 3.0) 0.46 1.0
rs2282679 (GC) C A 679 2.2 (0.3 to 4.1) 0.02 622 1.7 (20.2 to 3.5) 0.08 0.31

The homozygous low-frequency gene variant was used as the reference group, and b represents the change in 25(OH)D (nmol/L) per common allele.
aAdjusted for age, BMI, smoking status (yes/no), physical activity (strenuous activity more than once per week, yes/no), educational achievement (A levels
or higher, yes/no), and season of blood sampling (winter, spring, summer, autumn).
bBonferroni-corrected P values.
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maintained. Furthermore, a GRS including rs10741657
and rs2282679 showed that for each additional risk
allele, late pregnancy serum 25(OH)D concentration
after supplementation with cholecalciferol was lower
by 4.4 nmol/L (95% CI, 2.3 to 6.6 nmol/L, P, 0.001).
This association between the GRS and 25(OH)D was
not present presupplementation in early pregnancy
(Fig. 2).

Similarly, rs10741657 (CYP2R1) and rs2282679
(GC) were associated with the change in 25(OH)D from
14 to 34 weeks of gestation in women who received
the cholecalciferol supplement, whereas rs12785878
(DHCR7) and rs6013897 (CYP24A1) were not (Fig. 3).
The GRS was also negatively associated with the change
in serum 25(OH)D concentration (b = 24.4 nmol/L per
risk allele; 95% CI, 26.6 to 22.3 nmol/L per risk allele;

P , 0.001), such that women who had more risk alleles
had a smaller increment in 25(OH)D.

Sensitivity analysis
As the women were allowed to continue taking vi-

tamin D supplements containing up to 400 IU/d, in
sensitivity analyses, we included only women who were
not taking additional vitamin D–containing supple-
ments at 34 weeks of gestation (n = 224, 67.7%). The
relationships were similar to those in the whole cohort.

Discussion

This study assessed the relationships between common
genetic variants and the response to vitamin D supple-
mentation in pregnancy; rs12785878 in DHCR7 was

associated with 25(OH)D status in
early pregnancy prior to vitamin D
supplementation, whereas rs10741657
inCYP2R1 and rs2282679 inGCwere
associated with both the achieved
and change in 25(OH)D concentra-
tion following supplementation with
1000 IU/d cholecalciferol.

GWAS has been used to identify
SNPs associated with serum 25(OH)D
status (8, 22). However, there are few
studies investigating whether common
genetic variants modify the response to
supplementation and, to our knowl-
edge, no previous studies in pregnant
women. Two previous studies in non-
pregnant adults similarly found that
rs2282679 (GC) and rs10741567
(CYP2R1) are associated with serum
25(OH)D increment in response to
supplementation (10, 11), whereas
Barry et al. (9) did not identify these

Table 3. Association of SNPs With Achieved 25(OH)D at 34 Weeks of Gestation Following Supplementation
With 1000 IU/d Cholecalciferol in Pregnancy

SNP
Reference
Allele

Common
Allele

Univariate Adjusteda

Corrected
P Valuebn b (95% CI) P Value n b (95% CI) P Value

rs12785878 (DHCR7) G T 328 2.6 (21.4 to 6.5) 0.20 304 0.3 (23.5 to 4.0) 0.89 1.0
rs10741657 (CYP2R1) A G 328 24.8 (28.0 to21.6) 0.004 304 25.2 (28.2 to22.2) 0.001 0.004
rs6013897 (CYP24A1) A T 325 23.2 (27.1 to 0.8) 0.11 301 21.0 (24.8 to 2.8) 0.60 1.0
rs2282679 (GC) C A 329 4.3 (0.9 to 7.7) 0.01 305 4.2 (0.9 to 7.5) 0.01 0.04

The homozygous low frequency gene variant was used as the reference group. b represents the effect on achieved 25(OH)D (nmol/L) per common allele.
aAdjusted for age, pregnancy weight gain, smoking status (yes/no), physical activity (strenuous activity more than once per week, yes/no), educational
achievement (A levels or higher, yes/no), season of blood sampling (winter, spring, summer, autumn), compliance with study protocol, and baseline
25(OH)D.
bBonferroni-corrected P values.

Figure 2. 25(OH)D before and after supplementation with cholecalciferol in pregnancy
according to GRS for the SNPs rs10741657 (CYP2R1) and rs2282679 (GC). Shown as mean
and 95% CI for each group. P is for trend by linear regression with adjustment for
confounders.
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associations. The observed difference in achieved 25(OH)
D between the homozygous gene variants was higher in
the studies by Sollid et al. (10) and Didriksen et al. (11)
(15 to 18 nmol/L) than our cohort (9 to 10 nmol/L), but
this could reflect the higher cholecalciferol doses used in
those studies and/or alterations in vitamin D metabolism
and volume of distribution in pregnancy.

In our population, the SNPs associated with baseline
25(OH)D differed from those associatedwith the response
to cholecalciferol supplementation. The published GWAS
(8, 22) did not stratify individuals by vitamin D supple-
ment usage, which could account for differing associations
before and after supplementation in our cohort, or the
differing findings might reflect the lower power in our
study. Nonetheless, although the functional consequences
of these genetic markers remain the subject of research,
these differences are biologically plausible. The DHCR7
gene encodes 7-DHC reductase, which converts 7-DHC
back to cholesterol, thereby reducing the availability of 7-
DHC for conversion to previtamin D. The association of
this SNP with only baseline 25(OH)D is biologically
consistent with the notion that the relative proportion of
25(OH)D obtained from vitamin D biosynthesis in the
skin as opposed to dietary intake is lower following
supplementation.

CYP2R1 encodes a 25-hydroxylase, a key enzyme
involved in the conversion of vitaminD to 25(OH)D (23).
Hepatic hydroxylation of previtamin D to 25(OH)D is
thought not to be regulated and is therefore primarily

dependent on availability of the substrate.
We found that the rs10741657 SNP was
notassociatedwithbaseline25(OH)Dbut
was associated with the response to ges-
tational vitamin D supplementation,
therefore suggesting that this SNP only
modifies 25(OH)D status when the
substrate is more readily available and
that at the baseline measurement, satu-
ration of the enzyme had not been
reached. rs10741657 is locatedwithin the
promoter region of the CYP2R1 gene,
and our findings would suggest that
presence of the A allele increases enzyme
production. Because the G allele at
rs10741657, which was more frequent
in our population, was associated with
lower 25(OH)D following supplementa-
tion, it could be postulated that this allele
previously conferred an evolutionary ad-
vantage to prevent vitamin D toxicity.

In addition to associations with
25(OH)D, rs2282679 in GC has also
been associated with serum VDP con-

centrations, with carriers of the low-frequency C allele
having reduced concentrations of VDP and 25(OH)D (8).
SNPs in GC have also been associated with the binding
affinities of 25(OH)D to VDP (24), although the effect of
rs2282679 on binding affinity has not been established.
We similarly found that the C allele was associated with
lower achieved 25(OH)D following antenatal vitamin D
supplementation. Unfortunately, analysis of VDP was
not available in this cohort of women.

It is well recognized that individuals with darker skin
pigmentation living at higher latitudes tend to have lower
25(OH)D. Thismay in part reflect clustering of genotypes
within ethnic groups. For example, the G allele at
rs12785878 (DHCR7) is typically more prevalent in
nonwhite populations (25–29). Although our study in-
cluded only women of white ethnicity, the G allele was
associated with lower baseline 25(OH)D. The greater
prevalence of the G allele at rs12785878 with a resulting
increase in 7-DHC reductase activity (either due to a
functional modification or increased synthesis) leading to
reduced availability of 7-DHC for conversion to pre-
vitamin D might contribute to lower 25(OH)D in in-
dividuals with darker skin pigmentation. Furthermore, it
has previously been shown that rs2282679 (GC) was
only significantly associated with 25(OH)D in European
Americans and not African Americans (30), suggesting
further ethnicity-specific associations, which might form
the basis of future study, and consideration in clinical
approaches to supplementation.

Figure 3. Associations between SNPs and change in 25(OH)D from 14 to 34 weeks of
gestation following supplementation with 1000 IU/d cholecalciferol. Shown as b and 95%
CI. The homozygous low-frequency allele was used as the reference group, with the b

representing the change in 25(OH)D (nmol/L) per common allele (additive model). Models
were adjusted for age, physical activity, smoking status, educational attainment, season of
blood sampling, compliance, and pregnancy weight gain.
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There are a number of limitations to our findings. First,
due to stipulations made during the ethics approval pro-
cess, wewere unable to include participantswith a baseline
25(OH)D less than 25 nmol/L or greater than 100 nmol/L.
As such, confirmation of these findings in severely vitamin
D–deficient women is needed as it is possible that women
with specific genotypes were selectively excluded by this
inclusion criterion. Second, we did not identify associa-
tions between several SNPs and either baseline and/or
achieved 25(OH)D that had previously been associated
with 25(OH)D in GWAS (8, 22). This may reflect the
lower power of this study, although our findings are
similar to other small studies (10, 11). Furthermore, in this
study, we performed analysis only of candidate SNPs
previously identified to be associated with differences in
25(OH)D status. However, it is possible that alternate
SNPs/genes that are not clinically important to 25(OH)D
level in nonpregnant adults would be significant in preg-
nant women and could be identified by GWAS.

In conclusion, common genetic variation is associ-
ated with baseline 25(OH)D in pregnancy and the
response to antenatal supplementation with 1000 IU/d
cholecalciferol, but with differing SNPs appearing to
be important before and after supplementation. Our
findings suggest that analysis of SNPs may have an
important role in identifying high-risk categories of
individuals who are likely to require higher doses of
vitamin D to achieve repletion, and studies are needed to
establish clinical approaches to vitamin D supplemen-
tation that are centered on individual characteristics.
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