261 research outputs found

    Seismicity, seawater and seasonality: new insights into iceberg calving from Yahtse Glacier, Alaska

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2013At many of the largest glaciers and ice sheets on Earth, more than half of the annual ice loss occurs through iceberg calving into the ocean. Calving is also responsible for the most rapid ice mass changes, both directly (through the mechanical loss of ice at the terminus) and indirectly (through dynamic thinning of upstream ice initiated by terminus retreat). Yet, the mechanisms and factors that control calving are poorly understood. Recordings of glaciogenic seismic waves, known as "icequakes," produced during iceberg calving offer opportunities for insight that cannot be gleaned through other methods. In order to better understand iceberg calving and its links to calving icequakes, we conducted a 2-yr study of rapidly advancing Yahtse Glacier, site of one of the densest clusters of calving icequakes in southern Alaska. By synchronizing video of iceberg calving events with locally-recorded seismograms, we found that most icequake energy is produced after subaerial iceberg detachment from the glacier terminus, while the iceberg impacts and descends below the sea surface. Cavitation beneath the water surface generates the largest amplitude portions of icequakes-those that are detectable over several hundred km distances. Numerical simulations of these iceberg-sea surface interactions predict sources with durations that are consistent with the 1-5 Hz frequency content of calving icequakes. Oceanographic measurements in Icy Bay, where Yahtse Glacier terminates, reveal that warm water may melt most of the ice reaching the submarine terminus. During the summer, water with temperature > 10 °C flows from the Gulf of Alaska coast to within 2 km of Yahtse Glacier's terminus. We find that heat transport between 5 and 40 x 109 W can readily melt the submarine glacier terminus at a rate that matches the speed with which ice flows towards the glacier terminus (17 m d⁻Âč). Subaerial iceberg calving rates may be paced by submarine melt rates. To place our calving and submarine melt observations in a broader temporal context, we construct an empirical model of iceberg size using icequake properties and tune the model with over 800 visually-observed iceberg calving events. We find that iceberg calving is at its minimum during the winter, when seawater is cool and mixing of proglacial seawater by subglacial discharge is weak. Overlaying this long period cycle, we find significant daily to inter-annual variability and sensitivity of calving to tidal stage. These observations expand our appreciation for the ocean's important role in iceberg calving: at time scales ranging from the sub-second generation of icequakes, to the annual undercutting of the glacier terminus.Chapter 1. Introduction -- Chapter 2. Calving seismicity from iceberg-sea surface interactions -- Chapter 3. Does calving matter? Evidence fro significant submarine melt -- Chapter 4. Observing iceberg calving flux at a grounded tidewater glacier with passive seismology -- Chapter 5. Conclusions

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water ïŹ‚ow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water ïŹ‚ow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit ïŹ‚ow paths can be distinguished from single‐conduit ïŹ‚ow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely ïŹ‚ows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable conïŹgurations that last 3–7 days, while tremor produced by single‐conduit ïŹ‚ow remains more stationary. We also ïŹnd that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water ïŹ‚ow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water ïŹ‚ow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit ïŹ‚ow paths can be distinguished from single‐conduit ïŹ‚ow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely ïŹ‚ows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable conïŹgurations that last 3–7 days, while tremor produced by single‐conduit ïŹ‚ow remains more stationary. We also ïŹnd that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    Brief Communication: Is Vertical Shear in an Ice Shelf (Still) Negligible?

    Get PDF
    Vertical shear is recognized today as a key component of the stress balance of ice shelves. However, the first ice shelf models were built on the neglect of vertical shear. Partly due to its historical treatment, it remains common to discuss vertical shear as though it were still considered negligible in ice shelf models. Here, we offer a historical perspective on the changing treatment of vertical shear over time, and we emphasize the term\u27s non-negligibility in current ice shelf modeling. We illustrate our discussion in the simplest context of an analytic, isothermal, shallow-ice-shelf model

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    Subglacial water flow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water flow, hat is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit flow paths can be distinguished from single‐conduit flow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely flows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable configurations that last 3–7 days, while tremor produced by single‐conduit flow remains more stationary. We also find that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system

    Brief communication: Is vertical shear in an ice shelf (still) negligible?

    Get PDF
    Vertical shear is recognized today as a key component of the stress balance of ice shelves. However, the first ice shelf models were built on the neglect of vertical shear. Partly due to its historical treatment, it remains common to discuss vertical shear as though it were still considered negligible in ice shelf models. Here, we offer a historical perspective on the changing treatment of vertical shear over time, and we emphasize the term's non-negligibility in current ice shelf modeling. We illustrate our discussion in the simplest context of an analytic, isothermal, shallow-ice-shelf model.</p

    Evolution of drainage system morphology at a land-terminating Greenland outlet glacier

    Get PDF
    This work was funded by the UK Natural Environment Research Council (through grants to Nienow, Mair, and Wadham, and a studentship to Bartholomew), the Edinburgh University Moss Centenary Scholarship (Cowton and Bartholomew), and a Carnegie Research Grant (Nienow). We thank Ian Willis, Tim Bartholomaus and an anonymous referee for valuable comments which significantly improved the manuscript.Peer reviewedPublisher PD

    Distributed subglacial discharge drives signiïŹcant submarine melt at a Greenland tidewater glacier

    Get PDF
    Submarine melt can account for substantial mass loss at tidewater glacier termini. However, the processes controlling submarine melt are poorly understood due to limited observations of submarine termini. Here at a tidewater glacier in central West Greenland, we identify subglacial discharge outlets and infer submarine melt across the terminus using direct observations of the submarine terminus face. We find extensive melting associated with small discharge outlets. While the majority of discharge is routed to a single, large channel, outlets not fed by large tributaries drive submarine melt rates in excess of 3.0 m d−1 and account for 85% of total estimated melt across the terminus. Nearly the entire terminus is undercut, which may intersect surface crevasses and promote calving. Severe undercutting constricts buoyant outflow plumes and may amplify melt. The observed morphology and melt distribution motivate more realistic treatments of terminus shape and subglacial discharge in submarine melt models

    Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater inputs: implications for the relationship between subglacial drainage system behavior and ice velocity.

    Get PDF
    High resolution measurements of ice motion along a -120 km transect in a land-terminating section of the GrIS reveal short-term velocity variations (<1 day), which are forced by rapid variations in meltwater input to the subglacial drainage system from the ice sheet surface. The seasonal changes in ice velocity at low elevations (<1000 m) are dominated by events lasting from 1 day to 1 week, although daily cycles are largely absent at higher elevations, reflecting different patterns of meltwater input. Using a simple model of subglacial conduit behavior we show that the seasonal record of ice velocity can be understood in terms of a time-varying water input to a channelized subglacial drainage system. Our investigation substantiates arguments that variability in the duration and rate, rather than absolute volume, of meltwater delivery to the subglacial drainage system are important controls on seasonal patterns of subglacial water pressure, and therefore ice velocity. We suggest that interpretations of hydro-dynamic behavior in land-terminating sections of the GrIS margin which rely on steady state drainage theories are unsuitable for making predictions about the effect of increased summer ablation on future rates of ice motion. © 2012. American Geophysical Union

    Near-glacier surveying of a subglacial discharge plume: Implications for plume parameterizations

    Get PDF
    At tidewater glaciers, plume dynamics affect submarine melting, fjord circulation, and the mixing of meltwater. Models often rely on buoyant plume theory to parameterize plumes and submarine melting; however, these parameterizations are largely untested due to a dearth of near‐glacier measurements. Here we present a high‐resolution ocean survey by ship and remotely operated boat near the terminus of Kangerlussuup Sermia in west Greenland. These novel observations reveal the 3‐D structure and transport of a near‐surface plume, originating at a large undercut conduit in the glacier terminus, that is inconsistent with axisymmetric plume theory, the most common representation of plumes in ocean‐glacier models. Instead, the observations suggest a wider upwelling plume—a “truncated” line plume of ∌200 m width—with higher entrainment and plume‐driven melt compared to the typical axisymmetric representation. Our results highlight the importance of a subglacial outlet's geometry in controlling plume dynamics, with implications for parameterizing the exchange flow and submarine melt in glacial fjord models.NNX12AP50
    • 

    corecore