1,235 research outputs found

    Mild Traumatic Brain Injury: Lessons Learned from Clinical, Sports, and Combat Concussions

    Get PDF
    Over the past forty years, a tremendous amount of information has been gained on the mechanisms and consequences of mild traumatic brain injuries. Using sports as a laboratory to study this phenomenon, a natural recovery curve emerged, along with standards for managing concussions and returning athletes back to play. Although advances have been made in this area, investigation into recovery and return to play continues. With the increase in combat-related traumatic brain injuries in the military setting, lessons learned from sports concussion research are being applied by the Department of Defense to the assessment of blast concussions and return to duty decision making. Concussion management and treatment for military personnel can be complicated by additional combat related stressors not present in the civilian environment. Cognitive behavioral therapy is one of the interventions that has been successful in treating symptoms of postconcussion syndrome. While we are beginning to have an understanding of the impact of multiple concussions and subconcussive blows in the sports world, much is still unknown about the impact of multiple blast injuries

    The Development of Lightweight Electronics Enclosures for Space Applications

    Get PDF
    This paper outlines the end to end effort to produce lightweight electronics enclosures for NASA GSFC electronics applications with the end goal of presenting an array of lightweight box options for a flight opportunity. Topics including the development of requirements, design of three different boxes, utilization of advanced materials and processes, and analysis and test will be discussed. Three different boxes were developed independently and in parallel. A lightweight machined Aluminum box, a cast Aluminum box and a composite box were designed, fabricated, and tested both mechanically and thermally. There were many challenges encountered in meeting the requirements with a non-metallic enclosure and the development of the composite box employed several innovative techniques

    Mild traumatic brain injury: lessons learned from clinical, sports, and combat concussions

    Get PDF
    Over the past forty years, a tremendous amount of information has been gained on the mechanisms and consequences of mild traumatic brain injuries. Using sports as a laboratory to study this phenomenon, a natural recovery curve emerged, along with standards for managing concussions and returning athletes back to play. Although advances have been made in this area, investigation into recovery and return to play continues. With the increase in combat-related traumatic brain injuries in the military setting, lessons learned from sports concussion research are being applied by the Department of Defense to the assessment of blast concussions and return to duty decision making. Concussion management and treatment for military personnel can be complicated by additional combat related stressors not present in the civilian environment. Cognitive behavioral therapy is one of the interventions that has been successful in treating symptoms of postconcussion syndrome. While we are beginning to have an understanding of the impact of multiple concussions and subconcussive blows in the sports world, much is still unknown about the impact of multiple blast injuries

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad Line Region in Mrk 50

    Get PDF
    We present dynamical modeling of the broad line region (BLR) in the Seyfert 1 galaxy Mrk 50 using reverberation mapping data taken as part of the Lick AGN Monitoring Project (LAMP) 2011. We model the reverberation mapping data directly, constraining the geometry and kinematics of the BLR, as well as deriving a black hole mass estimate that does not depend on a normalizing factor or virial coefficient. We find that the geometry of the BLR in Mrk 50 is a nearly face-on thick disk, with a mean radius of 9.6(+1.2,-0.9) light days, a width of the BLR of 6.9(+1.2,-1.1) light days, and a disk opening angle of 25\pm10 degrees above the plane. We also constrain the inclination angle to be 9(+7,-5) degrees, close to face-on. Finally, the black hole mass of Mrk 50 is inferred to be log10(M(BH)/Msun) = 7.57(+0.44,-0.27). By comparison to the virial black hole mass estimate from traditional reverberation mapping analysis, we find the normalizing constant (virial coefficient) to be log10(f) = 0.78(+0.44,-0.27), consistent with the commonly adopted mean value of 0.74 based on aligning the M(BH)-{\sigma}* relation for AGN and quiescent galaxies. While our dynamical model includes the possibility of a net inflow or outflow in the BLR, we cannot distinguish between these two scenarios.Comment: Accepted for publication in ApJ. 8 pages, 6 figure

    The Lick AGN Monitoring Project 2011: Dynamical Modeling of the Broad-Line Region

    Full text link
    We present models of the Hβ\beta-emitting broad-line region (BLR) in seven Seyfert 1 galaxies from the Lick AGN (Active Galactic Nucleus) Monitoring Project 2011 sample, drawing inferences on the BLR structure and dynamics as well as the mass of the central supermassive black hole. We find that the BLR is generally a thick disk, viewed close to face-on, with preferential emission back toward the ionizing source. The dynamics in our sample range from near-circular elliptical orbits to inflowing or outflowing trajectories. We measure black hole masses of log10(MBH/M)=6.480.18+0.21\log_{10}(M_{\rm BH}/M_\odot) = 6.48^{+0.21}_{-0.18} for PG 1310-108, 7.500.18+0.257.50^{+0.25}_{-0.18} for Mrk 50, 7.460.21+0.157.46^{+0.15}_{-0.21} for Mrk 141, 7.580.08+0.087.58^{+0.08}_{-0.08} for Mrk 279, 7.110.17+0.207.11^{+0.20}_{-0.17} for Mrk 1511, 6.650.15+0.276.65^{+0.27}_{-0.15} for NGC 4593, and 6.940.14+0.146.94^{+0.14}_{-0.14} for Zw 229-015. We use these black hole mass measurements along with cross-correlation time lags and line widths to recover the scale factor ff used in traditional reverberation mapping measurements. Combining our results with other studies that use this modeling technique, bringing our sample size to 16, we calculate a scale factor that can be used for measuring black hole masses in other reverberation mapping campaigns. When using the root-mean-square (rms) spectrum and using the line dispersion to measure the line width, we find log10(frms,σ)pred=0.57±0.19\log_{10}(f_{{\rm rms},\sigma})_{\rm pred} = 0.57 \pm 0.19. Finally, we search for correlations between ff and other AGN and BLR parameters and find marginal evidence that ff is correlated with MBHM_{\rm BH} and the BLR inclination angle, but no significant evidence of a correlation with the AGN luminosity or Eddington ratio.Comment: 26 pages, 14 figures. Accepted for publication in Ap

    Berkeley Supernova Ia Program I: Observations, Data Reduction, and Spectroscopic Sample of 582 Low-Redshift Type Ia Supernovae

    Get PDF
    In this first paper in a series we present 1298 low-redshift (z\leq0.2) optical spectra of 582 Type Ia supernovae (SNe Ia) observed from 1989 through 2008 as part of the Berkeley SN Ia Program (BSNIP). 584 spectra of 199 SNe Ia have well-calibrated light curves with measured distance moduli, and many of the spectra have been corrected for host-galaxy contamination. Most of the data were obtained using the Kast double spectrograph mounted on the Shane 3 m telescope at Lick Observatory and have a typical wavelength range of 3300-10,400 Ang., roughly twice as wide as spectra from most previously published datasets. We present our observing and reduction procedures, and we describe the resulting SN Database (SNDB), which will be an online, public, searchable database containing all of our fully reduced spectra and companion photometry. In addition, we discuss our spectral classification scheme (using the SuperNova IDentification code, SNID; Blondin & Tonry 2007), utilising our newly constructed set of SNID spectral templates. These templates allow us to accurately classify our entire dataset, and by doing so we are able to reclassify a handful of objects as bona fide SNe Ia and a few other objects as members of some of the peculiar SN Ia subtypes. In fact, our dataset includes spectra of nearly 90 spectroscopically peculiar SNe Ia. We also present spectroscopic host-galaxy redshifts of some SNe Ia where these values were previously unknown. [Abridged]Comment: 34 pages, 11 figures, 11 tables, revised version, re-submitted to MNRAS. Spectra will be released in January 2013. The SN Database homepage (http://hercules.berkeley.edu/database/index_public.html) contains the full tables, plots of all spectra, and our new SNID template

    Fast left prefrontal rTMS acutely suppresses analgesic effects of perceived controllability on the emotional component of pain experience

    Get PDF
    The prefrontal cortex may be a promising target for transcranial magnetic stimulation (TMS) in the management of pain. It is not clear how prefrontal TMS affects pain perception, but previous findings suggest that ventral lateral and medial prefrontal circuits may comprise an important part of a circuit of ‘perceived controllability’ regarding pain, stress and learned helplessness. While the left dorsolateral prefrontal cortex is a common TMS target for treating clinical depression as well as modulating pain, little is known about whether TMS over this area may affect perceived controllability. The present study explored the immediate effects of fast TMS over the left dorsolateral prefrontal cortex on the analgesic effects of perceived pain controllability. Twenty-four healthy volunteers underwent a laboratory pain task designed to manipulate perception of pain controllability. Real TMS, compared to sham, suppressed the analgesic benefits of perceived-control on the emotional dimension of pain, but not the sensory/discriminatory dimension. Findings suggest that, at least acutely, fast TMS over the left dorsolateral prefrontal cortex may interrupt the perceived-controllability effect on the emotional dimension of pain experience. While it is not clear whether this cortical area is directly involved with modulating perceived controllability or whether downstream effects are responsible for the present findings, it appears possible that left dorsolateral prefrontal TMS may produce analgesic effects by acting through a cortical ‘perceived control’ circuit regulating limbic and brainstem areas of the pain circuit

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Requirements for F-BAR Proteins TOCA-1 and TOCA-2 in Actin Dynamics and Membrane Trafficking during Caenorhabditis elegans Oocyte Growth and Embryonic Epidermal Morphogenesis

    Get PDF
    The TOCA family of F-BAR–containing proteins bind to and remodel lipid bilayers via their conserved F-BAR domains, and regulate actin dynamics via their N-Wasp binding SH3 domains. Thus, these proteins are predicted to play a pivotal role in coordinating membrane traffic with actin dynamics during cell migration and tissue morphogenesis. By combining genetic analysis in Caenorhabditis elegans with cellular biochemical experiments in mammalian cells, we showed that: i) loss of CeTOCA proteins reduced the efficiency of Clathrin-mediated endocytosis (CME) in oocytes. Genetic interference with CeTOCAs interacting proteins WSP-1 and WVE-1, and other components of the WVE-1 complex, produced a similar effect. Oocyte endocytosis defects correlated well with reduced egg production in these mutants. ii) CeTOCA proteins localize to cell–cell junctions and are required for proper embryonic morphogenesis, to position hypodermal cells and to organize junctional actin and the junction-associated protein AJM-1. iii) Double mutant analysis indicated that the toca genes act in the same pathway as the nematode homologue of N-WASP/WASP, wsp-1. Furthermore, mammalian TOCA-1 and C. elegans CeTOCAs physically associated with N-WASP and WSP-1 directly, or WAVE2 indirectly via ABI-1. Thus, we propose that TOCA proteins control tissues morphogenesis by coordinating Clathrin-dependent membrane trafficking with WAVE and N-WASP–dependent actin-dynamics
    corecore