11 research outputs found

    Effects of early dark energy on strong cluster lensing

    Full text link
    We use the semi-analytic method developed by Fedeli et al. for computing strong-lensing optical depths to study the statistics of gravitational arcs in four dark-energy cosmologies. Specifically, we focus on models with early dark energy and compare them to more conventional models. Merger trees are constructed for the cluster population because strong cluster lensing is amplified by factors of two to three during mergers. We find that the optical depth for gravitational arcs in the early dark-energy models is increased by up to a factor of about 3 compared to the other models because of the modified dynamics of cluster formation. In particular, the probability for gravitational arcs in high-redshift clusters is considerably increased, which may offer an explanation for the unexpectedly high lensing efficiency of distant clusters.Comment: 10 pages, 9 figures, accepted for publication on A&

    Non-linear Structure Formation in Cosmologies with Early Dark Energy

    Full text link
    We argue that a few per cent of "Early Dark Energy" can be detected by the statistics of nonlinear structures. The presence of Dark Energy during linear structure formation is natural in models where the present tiny Dark-Energy density is related to the age of the Universe rather than a new fundamental small parameter. Generalisation of the spherical collapse model shows that the linear collapse parameter delta_c is lowered. The corresponding relative enhancement of weak gravitational lensing on arc-minute scales lowers the value of sigma_8 inferred from a given lensing amplitude as compared to Lambda-CDM. In presence of Early Dark Energy, structures grow slower, such that for given sigma_8 the number of galaxies and galaxy clusters is substantially increased at moderate and high redshift. For realistic models, the number of clusters detectable through their thermal Sunyaev-Zel'dovich effect at redshift unity and above, e.g. with the Planck satellite, can be an order of magnitude larger than for Lambda-CDM.Comment: 10 pages, 12 figure

    Observing the clustering properties of galaxy clusters in dynamical dark-energy cosmologies

    Full text link
    We study the clustering properties of galaxy clusters expected to be observed by various forthcoming surveys both in the X-ray and sub-mm regimes by the thermal Sunyaev-Zel'dovich effect. Several different background cosmological models are assumed, including the concordance Λ\LambdaCDM and various cosmologies with dynamical evolution of the dark energy. Particular attention is paid to models with a significant contribution of dark energy at early times which affects the process of structure formation. Past light cone and selection effects in cluster catalogs are carefully modeled by realistic scaling relations between cluster mass and observables and by properly taking into account the selection functions of the different instruments. The results show that early dark-energy models are expected to produce significantly lower values of effective bias and both spatial and angular correlation amplitudes with respect to the standard Λ\LambdaCDM model. Among the cluster catalogues studied in this work, it turns out that those based on \emph{eRosita}, \emph{Planck}, and South Pole Telescope observations are the most promising for distinguishing between various dark-energy models.Comment: 16 pages, 10 figures. A&A in pres

    Observational constraints on the dark energy density evolution

    Full text link
    We constrain the evolution of the dark energy density from Cosmic Microwave Background, Large Scale Structure and Supernovae Ia measurements. While Supernovae Ia are most sensitive to the equation of state w0w_0 of dark energy today, the Cosmic Microwave Background and Large Scale Structure data best constrains the dark energy evolution at earlier times. For the parametrization used in our models, we find w0<0.8w_0 < -0.8 and the dark energy fraction at very high redshift Ωearly<0.03\Omega_{early} < 0.03 at 95 per cent confidence level.Comment: 5 pages, 10 figure

    Early Dark Energy Cosmologies

    Full text link
    We propose a novel parameterization of the dark energy density. It is particularly well suited to describe a non-negligible contribution of dark energy at early times and contains only three parameters, which are all physically meaningful: the fractional dark energy density today, the equation of state today and the fractional dark energy density at early times. As we parameterize Omega_d(a) directly instead of the equation of state, we can give analytic expressions for the Hubble parameter, the conformal horizon today and at last scattering, the sound horizon at last scattering, the acoustic scale as well as the luminosity distance. For an equation of state today w_0 < -1, our model crosses the cosmological constant boundary. We perform numerical studies to constrain the parameters of our model by using Cosmic Microwave Background, Large Scale Structure and Supernovae Ia data. At 95% confidence, we find that the fractional dark energy density at early times Omega_early < 0.06. This bound tightens considerably to Omega_early < 0.04 when the latest Boomerang data is included. We find that both the gold sample of Riess et. al. and the SNLS data by Astier et. al. when combined with CMB and LSS data mildly prefer w_0 < -1, but are well compatible with a cosmological constant.Comment: 6 pages, 3 figures; references added, matches published versio

    Impact of early dark energy on the Planck SZ cluster sample

    Full text link
    Context. One science goal of the upcoming Planck mission is to perform a full-sky cluster survey based on the Sunyaev-Zel'dovich (SZ) effect, which leads to the question of how such a survey would be affected by cosmological models with a different history of structure formation than LCDM. One class of these models are early dark energy (EDE) cosmologies, where the dark energy contribution does not vanish at early times. Aims. Since structures grow slower in the presence of EDE, one expects an increase in the number of galaxy clusters compared to LCDM at intermediate and high redshifts, which could explain the reported excess of the angular CMB power spectrum on cluster scales via an enhanced SZ contribution. We study the impact of EDE on Planck's expected cluster sample. Methods. To obtain realistic simulations, we constructed full-sky SZ maps for EDE and LCDM cosmologies, taking angular cluster correlation into account. Using these maps, we simulated Planck observations with and without Galactic foregrounds and fed the results into our filter pipeline based on the spherical multi-frequency matched filters. Results. For the case of EDE cosmologies, we clearly find an increase in the detected number of clusters compared to the fiducial LCDM case. This shows that the spherical multi-frequency matched filter is sensitive enough to find deviations from the LCDM sample, being caused by EDE. In addition we find an interesting effect of EDE on the completeness of the cluster sample, such that EDE helps to obtain cleaner samples.Comment: 12 pages, 10 figures, accepted for publication in A&A, minor language corrections. Notable changes include an added subsection on collapse parameters for EDE models and a discussion of the consequent SZ power spectr

    Spherical collapse model in dark energy cosmologies

    Full text link
    We study the spherical collapse model for several dark energy scenarios using the fully nonlinear differential equation for the evolution of the density contrast within homogeneous spherical overdensities derived from Newtonian hydrodynamics. While mathematically equivalent to the more common approach based on the differential equation for the radius of the perturbation, this approach has substantial conceptual as well as numerical advantages. Among the most important are that no singularities at early times appear, which avoids numerical problems in particular in applications to cosmologies with dynamical and early dark energy, and that the assumption of time-reversal symmetry can easily be dropped where it is not strictly satisfied. We use this approach to derive the two parameters characterising the spherical-collapse model, i.e.~the linear density threshold for collapse δc\delta_\mathrm{c} and the virial overdensity ΔV\Delta_\mathrm{V}, for a broad variety of dark-energy models and to reconsider these parameters in cosmologies with early dark energy. We find that, independently of the model under investigation, δc\delta_\mathrm{c} and ΔV\Delta_\mathrm{V} are always very close to the values obtained for the standard Λ\LambdaCDM model, arguing that the abundance of and the mean density within non-linear structures are quite insensitive to the differences between dark-energy cosmologies. Regarding early dark energy, we thus arrive at a different conclusion than some earlier papers, including one from our group, and we explain why.Comment: 11 pages, 7 figures, accepted for publications on MNRA

    Constraining the dark energy dynamics with the cosmic microwave background bispectrum

    Full text link
    We consider the influence of the dark energy dynamics at the onset of cosmic acceleration on the Cosmic Microwave Background (CMB) bispectrum, through the weak lensing effect induced by structure formation. We study the line of sight behavior of the contribution to the bispectrum signal at a given angular multipole ll: we show that it is non-zero in a narrow interval centered at a redshift zz satisfying the relation l/r(z)kNL(z)l/r(z)\simeq k_{NL}(z), where the wavenumber corresponds to the scale entering the non-linear phase, and rr is the cosmological comoving distance. The relevant redshift interval is in the range 0.1\lsim z\lsim 2 for multipoles 1000\gsim\ell\gsim 100; the signal amplitude, reflecting the perturbation dynamics, is a function of the cosmological expansion rate at those epochs, probing the dark energy equation of state redshift dependence independently on its present value. We provide a worked example by considering tracking inverse power law and SUGRA Quintessence scenarios, having sensibly different redshift dynamics and respecting all the present observational constraints. For scenarios having the same present equation of state, we find that the effect described above induces a projection feature which makes the bispectra shifted by several tens of multipoles, about 10 times more than the corresponding effect on the ordinary CMB angular power spectrum.Comment: 15 pages, 7 figures, matching version accepted by Physical Review D, one figure improve

    Weak lensing in generalized gravity theories

    Get PDF
    We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expansion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar. Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the effects, we work out approximate expressions for the quantities above in extended quintessence scenarios where the scalar field coupled to gravity plays the role of the dark energy

    Model-independent dark energy test with sigma_8 using results from the Wilkinson Microwave Anisotropy Probe

    Get PDF
    By combining the recent WMAP measurements of the cosmic microwave background anisotropies and the results of the recent luminosity distance measurements to type-Ia supernovae, we find that the normalization of the matter power spectrum on cluster scales, sigma_8, can be used to discriminate between dynamical models of dark energy (quintessence models) and a conventional cosmological constant model (LCDM).Comment: 5 pages, 6 figures. Additional discussion and reference, matches PRD accepted versio
    corecore