111 research outputs found

    In-Vivo Bytecode Instrumentation for Improving Privacy on Android Smartphones in Uncertain Environments

    Get PDF
    In this paper we claim that an efficient and readily applicable means to improve privacy of Android applications is: 1) to perform runtime monitoring by instrumenting the application bytecode and 2) in-vivo, i.e. directly on the smartphone. We present a tool chain to do this and present experimental results showing that this tool chain can run on smartphones in a reasonable amount of time and with a realistic effort. Our findings also identify challenges to be addressed before running powerful runtime monitoring and instrumentations directly on smartphones. We implemented two use-cases leveraging the tool chain: BetterPermissions, a fine-grained user centric permission policy system and AdRemover an advertisement remover. Both prototypes improve the privacy of Android systems thanks to in-vivo bytecode instrumentation.Comment: ISBN: 978-2-87971-111-

    La comparaison comme méthode et objet : L’apport d’un parcours transdisciplinaire pour réfléchir au franco-allemand

    Get PDF
    peer reviewedDoctorant.e.s en SHS, travaillant sur des questions franco-allemandes, nous proposons ici une approche réflexive et critique de la comparaison, appuyée sur la transdisciplinarité. En partant d’exemples tirés de nos travaux respectifs, cet article fait état de nos réflexions collectives sur l’utilisation de l’approche comparative dans nos recherches doctorales en montrant les atouts du partage de savoirs et d’instruments méthodologiques entre nos disciplines : la sociologie, l’histoire, la science politique et la psychologie. Nous retenons deux dimensions centrales que nous proposons de développer ici. En considérant la comparaison comme une méthode, nous nous questionnons d’abord sur la place de la variable nationale dans la construction d’une recherche comparative franco-allemande. Ensuite, en considérant cette fois la comparaison comme un objet d'étude en elle-même, nous montrons l’importance de la contextualisation des points de vue de celui/celle qui compare, qu’il/elle soit chercheur.e ou profane

    Android Malware Detection Using BERT

    Get PDF
    In this paper, we propose two empirical studies to (1) detect Android malware and (2) classify Android malware into families. We rst (1) reproduce the results of MalBERT using BERT models learning with Android application's manifests obtained from 265k applications (vs. 22k for MalBERT) from the AndroZoo dataset in order to detect malware. The results of the MalBERT paper are excellent and hard to believe as a manifest only roughly represents an application, we therefore try to answer the following questions in this paper. Are the experiments from MalBERT reproducible? How important are Permissions for mal- ware detection? Is it possible to keep or improve the results by reducing the size of the manifests? We then (2) investigate if BERT can be used to classify Android malware into families. The results show that BERT can successfully di erentiate malware/goodware with 97% accuracy. Further- more BERT can classify malware families with 93% accuracy. We also demonstrate that Android permissions are not what allows BERT to successfully classify and even that it does not actually need it

    Improving privacy on android smartphones through in-vivo bytecode instrumentation

    Get PDF
    In this paper we claim that a widely applicable and efficient means to fight against malicious mobile Android applications is: 1) to per- form runtime monitoring 2) by instrumenting the application byte- code and 3) in-vivo, i.e. directly on the smartphone. We present a tool chain to do this and present experimental results showing that this tool chain can run on smartphones in a reasonable amount of time and with a realistic effort. Our findings also identify chal- lenges to be addressed before running powerful runtime monitoring and instrumentations directly on smartphones. We implemented two use-cases leveraging the tool chain: FineGPolicy, a fine-grained user centric permission policy system and AdRemover an adver- tisement remover. Both prototypes improve the privacy of Android systems thanks to in-vivo bytecode instrumentation

    Specific sequence determinants of miR-15/107 microRNA gene group targets

    Get PDF
    MicroRNAs (miRNAs) target mRNAs in human cells via complex mechanisms that are still incompletely understood. Using anti-Argonaute (anti-AGO) antibody co-immunoprecipitation, followed by microarray analyses and downstream bioinformatics, ‘RIP-Chip’ experiments enable direct analyses of miRNA targets. RIP-Chip studies (and parallel assessments of total input mRNA) were performed in cultured H4 cells after transfection with miRNAs corresponding to the miR-15/107 gene group (miR-103, miR-107, miR-16 and miR-195), and five control miRNAs. Three biological replicates were run for each condition with a total of 54 separate human Affymetrix Human Gene 1.0 ST array replicates. Computational analyses queried for determinants of miRNA:mRNA binding. The analyses support four major findings: (i) RIP-Chip studies correlated with total input mRNA profiling provides more comprehensive information than using either RIP-Chip or total mRNA profiling alone after miRNA transfections; (ii) new data confirm that miR-107 paralogs target coding sequence (CDS) of mRNA; (iii) biochemical and computational studies indicate that the 3′ portion of miRNAs plays a role in guiding miR-103/7 to the CDS of targets; and (iv) there are major sequence-specific targeting differences between miRNAs in terms of CDS versus 3′-untranslated region targeting, and stable AGO association versus mRNA knockdown. Future studies should take this important miRNA-to-miRNA variability into account

    MicroRNAs in pulmonary arterial remodeling

    Get PDF
    Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH

    Discovering ligands for a microRNA precursor with peptoid microarrays

    Get PDF
    We have screened peptoid microarrays to identify specific ligands for the RNA hairpin precursor of miR-21, a microRNA involved in cancer and heart disease. Microarrays were printed by spotting a library of 7680 N-substituted oligoglycines (peptoids) onto glass slides. Two compounds on the array specifically bind RNA having the sequence and predicted secondary structure of the miR-21 precursor hairpin and have specific affinity for the target in solution. Their binding induces a conformational change around the hairpin loop, and the most specific compound recognizes the loop sequence and a bulged uridine in the proximal duplex. Functional groups contributing affinity and specificity were identified, and by varying a critical methylpyridine group, a compound with a dissociation constant of 1.9 μM for the miR-21 precursor hairpin and a 20-fold discrimination against a closely-related hairpin was created. This work describes a systematic approach to discovery of ligands for specific pre-defined novel RNA structures. It demonstrates discovery of new ligands for an RNA for which no specific lead compounds were previously known by screening a microarray of small molecules
    corecore