153 research outputs found

    High angular resolution Sunyaev-Zel'dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis

    Get PDF
    The prototype of the NIKA2 camera, NIKA, is an instrument operating at the IRAM 30-m telescope, which can observe simultaneously at 150 and 260GHz. One of the main goals of NIKA2 is to measure the pressure distribution in galaxy clusters at high resolution using the thermal SZ (tSZ) effect. Such observations have already proved to be an excellent probe of cluster pressure distributions even at high redshifts. However, an important fraction of clusters host submm and/or radio point sources, which can significantly affect the reconstructed signal. Here we report on <20" resolution observations at 150 and 260GHz of the cluster MACSJ1424, which hosts both radio and submm point sources. We examine the morphology of the tSZ signal and compare it to other datasets. The NIKA data are combined with Herschel satellite data to study the SED of the submm point source contaminants. We then perform a joint reconstruction of the intracluster medium (ICM) electronic pressure and density by combining NIKA, Planck, XMM-Newton, and Chandra data, focusing on the impact of the radio and submm sources on the reconstructed pressure profile. We find that large-scale pressure distribution is unaffected by the point sources because of the resolved nature of the NIKA observations. The reconstructed pressure in the inner region is slightly higher when the contribution of point sources are removed. We show that it is not possible to set strong constraints on the central pressure distribution without accurately removing these contaminants. The comparison with X-ray only data shows good agreement for the pressure, temperature, and entropy profiles, which all indicate that MACSJ1424 is a dynamically relaxed cool core system. The present observations illustrate the possibility of measuring these quantities with a relatively small integration time, even at high redshift and without X-ray spectroscopy.Comment: 15 pages, 17 figures, submitted to A&

    Non-Pauli Effects from Noncommutative Spacetimes

    Full text link
    Noncommutative spacetimes lead to nonlocal quantum field theories (qft's) where spin-statistics theorems cannot be proved. For this reason, and also backed by detailed arguments, it has been suggested that they get corrected on such spacetimes leading to small violations of the Pauli principle. In a recent paper \cite{Pauli}, Pauli-forbidden transitions from spacetime noncommutativity were calculated and confronted with experiments. Here we give details of the computation missing from this paper. The latter was based on a spacetime Bχn\mathcal{B}_{\chi\vec{n}} different from the Moyal plane. We argue that it quantizes time in units of χ\chi. Energy is then conserved only mod 2πχ\frac{2\pi}{\chi}. Issues related to superselection rules raised by non-Pauli effects are also discussed in a preliminary manner.Comment: 15 Pages, 1 Table, Full details and further developments of arXiv:1003.2250. This version is close to the one accepted by JHE

    Improved understanding of self-sustained, sub-micrometric multi-composition surface Constantan wires interacting with H2 at high temperatures: experimental evidence of Anomalous Heat Effects

    Get PDF
    This article is an extension of what presented by our team at 17th International Conference on Cold Fusion, ICCF-17, in Daejon, Korea, in 2012 [1]. It documents the improvements on Constantan-related experiments, started in 2011, in order to study the feasibility of new Nickel based alloys that are able to absorb proper amounts of Hydrogen (H2) and/or Deuterium (D2) and that have, in principle, some possibility to generate anomalous thermal effects at temperatures &gt;100°C. The interest in Ni comes in part because there is the possibility to use also H2 instead of expensive D2. Moreover, cross-comparison of results using H2 instead of D2 can be made and could help the understanding of the phenomena involved (atomic, nuclear, super-chemical origin?) due to the use of such isotopes. Keywords: calorimeter, LENR, Nickel based alloys, sub-micrometric surface

    High-resolution tSZ cartography of clusters of galaxies with NIKA at the IRAM 30-m telescope

    Full text link
    The thermal Sunyaev-Zeldovich effect (tSZ) is a powerful probe to study clusters of galaxies and is complementary with respect to X-ray, lensing or optical observations. Previous arcmin resolution tSZ observations ({\it e.g.} SPT, ACT and Planck) only enabled detailed studies of the intra-cluster medium morphology for low redshift clusters (z<0.2z < 0.2). Thus, the development of precision cosmology with clusters requires high angular resolution observations to extend the understanding of galaxy cluster towards high redshift. NIKA2 is a wide-field (6.5 arcmin field of view) dual-band camera, operated at 100 mK100 \ {\rm mK} and containing 3300\sim 3300 KID (Kinetic Inductance Detectors), designed to observe the millimeter sky at 150 and 260 GHz, with an angular resolution of 18 and 12 arcsec respectively. The NIKA2 camera has been installed on the IRAM 30-m telescope (Pico Veleta, Spain) in September 2015. The NIKA2 tSZ observation program will allow us to observe a large sample of clusters (50) at redshift ranging between 0.5 and 1. As a pathfinder for NIKA2, several clusters of galaxies have been observed at the IRAM 30-m telescope with the NIKA prototype to cover the various configurations and observation conditions expected for NIKA2.Comment: Proceedings of the 28th Texas Symposium on Relativistic Astrophysics, Geneva, Switzerland, December 13-18, 201

    Detection of non-thermal X-ray emission in the lobes and jets of Cygnus A

    Get PDF
    This article has been published in Monthly Notices of the Royal Astronomical Society © 2018 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. 21 pages, 8 figuresWe present a spectral analysis of the lobes and X-ray jets of Cygnus A, using more than 2 Ms of Chandra\textit{Chandra} observations. The X-ray jets are misaligned with the radio jets and significantly wider. We detect non-thermal emission components in both lobes and jets. For the eastern lobe and jet, we find 1 keV flux densities of 7110+1071_{-10}^{+10} nJy and 244+424_{-4}^{+4} nJy, and photon indices of 1.720.03+0.031.72_{-0.03}^{+0.03} and 1.640.04+0.041.64_{-0.04}^{+0.04} respectively. For the western lobe and jet, we find flux densities of 5013+1250_{-13}^{+12} nJy and 135+513_{-5}^{+5} nJy, and photon indices of 1.970.10+0.231.97_{-0.10}^{+0.23} and 1.860.12+0.181.86_{-0.12}^{+0.18} respectively. Using these results, we modeled the electron energy distributions of the lobes as broken power laws with age breaks. We find that a significant population of non-radiating particles is required to account for the total pressure of the eastern lobe. In the western lobe, no such population is required and the low energy cutoff to the electron distribution there needs to be raised to obtain pressures consistent with observations. This discrepancy is a consequence of the differing X-ray photon indices, which may indicate that the turnover in the inverse-Compton spectrum of the western lobe is at lower energies than in the eastern lobe. We modeled the emission from both jets as inverse-Compton emission. There is a narrow region of parameter space for which the X-ray jet can be a relic of an earlier active phase, although lack of knowledge about the jet's electron distribution and particle content makes the modelling uncertain.Peer reviewedFinal Published versio

    Further progress/developments, on surface/bulk treated Constantan wires, for anomalous heat generation by H2/D2 interaction

    Get PDF
    In the framework of those studies aimed to analyze anomalous effects (thermal and/or nuclear) due to the interaction among some specific materials (pure and/or alloys) and H2 (or D2), we focused, since 2011, on a specific alloy called Constantan (Cu55-Ni44-Mn1). We selected such material using our own considerations and intuitions and because, according to a scientific paper [1], it has the largest energy value for dissociation of H2 to 2H, i.e. about 3eV. Among others B. Ahern suggested that Ni-Cu-H can be used for heat generation. We improved the preparation procedure of such wire from simple thermal treatments (up to May 2012 [2])to more sophisticated ones, with more tight control of the multilayered (400-700) surface structures. Some of the results were presented at ICCF17, Aug. 2012 [3]. After [3], several groups asked to make their own experiments using such kind of wires ([phi]=200[mu]m, l=100cm) to cross-check (and possibly improve) our results. Some of such Researchers (group of M. Fleischmann Memorial Project; U. Mastromatteo) made public their (positive) results since Dec. 14, 2012 at Ministry of Aeronautics in Rome, Italy. In short, using an (home-made) apparatus integrated with an acquisition system (type PXi) by National Instruments, we made, since September 2012, not mentioning qualitative reconfirmation of previous results, further and unexpected progress and discoveries: a) We developed a new kind of procedure of measurement (about anomalous excess heat) under dynamic vacuum, to avoid the effect of different thermal conductivity, inside the gas cell, due to type of gas and pressure variation: the wire didn't lose, macroscopically, H even at T=600[degrees]C. b) We developed a new, very simple, type of surface coating (2 layers) that is nano-diamandoidslike; c) We observed, at least 2 times, the phenomenon of water splitting due to catalytic effect of surface treated Constantan. Such phenomenon is larger in comparison with what expected just by thermal splitting (wires temperature of about 300-500[degrees]C); d) We observed a very large variation (about a factor 100) of Resistive Thermal Coefficient (RTC) of the wire used (400 layers) as the amount of H (related to the macroscopic value of resistive ratio R/Ro, normalize to empty wire Ro) increased. As example, with "treated" virgin wire (w/o H2) the RTC was about 5*10-6 and increased to6*10-4 when the R/Ro reduced to 0.68; temperature range 20-300[degrees]C. The RTC is larger with D in respect to H. Experiments are in progress also at 77K. e) Overall results are affected by previous operating conditions

    NIKA2: a mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations ({\it e.g.} SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z0.5z0.5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2.

    Nika2: A mm camera for cluster cosmology

    Get PDF
    Galaxy clusters constitute a major cosmological probe. However, Planck 2015 results have shown a weak tension between CMB-derived and cluster-derived cosmological parameters. This tension might be due to poor knowledge of the cluster mass and observable relationship. As for now, arcmin resolution Sunyaev-Zeldovich (SZ) observations (e.g. SPT, ACT and Planck) only allowed detailed studies of the intra cluster medium for low redshift clusters (z 0:5) high resolution and high sensitivity SZ observations are needed. With both a wide field of view (6.5 arcmin) and a high angular resolution (17.7 and 11.2 arcsec at 150 and 260 GHz), the NIKA2 camera installed at the IRAM 30-m telescope (Pico Veleta, Spain) is particularly well adapted for these observations. The NIKA2 SZ observation program will map a large sample of clusters (50) at redshifts between 0.5 and 0.9. As a pilot study for NIKA2, several clusters of galaxies have been observed with the pathfinder, NIKA, at the IRAM 30-m telescope to cover the various configurations and observation conditions expected for NIKA2

    Mapping the kinetic Sunyaev-Zel'dovich effect toward MACS J0717.5+3745 with NIKA

    Get PDF
    Measurement of the gas velocity distribution in galaxy clusters provides insight into the physics of mergers, through which large scale structures form in the Universe. Velocity estimates within the intracluster medium (ICM) can be obtained via the Sunyaev-Zel'dovich (SZ) effect, but its observation is challenging both in term of sensitivity requirement and control of systematic effects, including the removal of contaminants. In this paper we report resolved observations, at 150 and 260 GHz, of the SZ effect toward the triple merger MACS J0717.5+3745 (z=0.55), using data obtained with the NIKA camera at the IRAM 30m telescope. Assuming that the SZ signal is the sum of a thermal (tSZ) and a kinetic (kSZ) component and by combining the two NIKA bands, we extract for the first time a resolved map of the kSZ signal in a cluster. The kSZ signal is dominated by a dipolar structure that peaks at -5.1 and +3.4 sigma, corresponding to two subclusters moving respectively away and toward us and coincident with the cold dense X-ray core and a hot region undergoing a major merging event. We model the gas electron density and line-of-sight velocity of MACS J0717.5+3745 as four subclusters. Combining NIKA data with X-ray observations from XMM-Newton and Chandra, we fit this model to constrain the gas line-of-sight velocity of each component, and we also derive, for the first time, a velocity map from kSZ data (i.e. that is model-dependent). Our results are consistent with previous constraints on the merger velocities, and thanks to the high angular resolution of our data, we are able to resolve the structure of the gas velocity. Finally, we investigate possible contamination and systematic effects with a special care given to radio and submillimeter galaxies. Among the sources that we detect with NIKA, we find one which is likely to be a high redshift lensed submillimeter galaxy.Comment: 19 pages, 9 figures, accepted in A&

    The nature of singlet exciton fission in carotenoid aggregates.

    Get PDF
    Singlet exciton fission allows the fast and efficient generation of two spin triplet states from one photoexcited singlet. It has the potential to improve organic photovoltaics, enabling efficient coupling to the blue to ultraviolet region of the solar spectrum to capture the energy generally lost as waste heat. However, many questions remain about the underlying fission mechanism. The relation between intermolecular geometry and singlet fission rate and yield is poorly understood and remains one of the most significant barriers to the design of new singlet fission sensitizers. Here we explore the structure-property relationship and examine the mechanism of singlet fission in aggregates of astaxanthin, a small polyene. We isolate five distinct supramolecular structures of astaxanthin generated through self-assembly in solution. Each is capable of undergoing intermolecular singlet fission, with rates of triplet generation and annihilation that can be correlated with intermolecular coupling strength. In contrast with the conventional model of singlet fission in linear molecules, we demonstrate that no intermediate states are involved in the triplet formation: instead, singlet fission occurs directly from the initial 1B(u) photoexcited state on ultrafast time scales. This result demands a re-evaluation of current theories of polyene photophysics and highlights the robustness of carotenoid singlet fission.This work was supported by the EPSRC (UK) (EP/G060738/ 1), the European Community (LASERLAB-EUROPE, grant agreement no. 284464, EC’s Seventh Framework Programme; and Marie-Curie ITN-SUPERIOR, PITN-GA-2009-238177), and the Winton Programme for the Physics of Sustainability. G.C. acknowledges support by the European Research Council Advanced Grant STRATUS (ERC-2011-AdG No. 291198). J.C. acknowledges support by the Royal Society Dorothy Hodgkin Fellowship and The University of Sheffield’s Vice- Chancellor’s Fellowship scheme.This is the final published version. It was first made available by ACS at http://pubs.acs.org/doi/abs/10.1021/jacs.5b01130
    corecore