245 research outputs found
Development of code evaluation criteria for assessing predictive capability and performance
Computational Fluid Dynamics (CFD), because of its unique ability to predict complex three-dimensional flows, is being applied with increasing frequency in the aerospace industry. Currently, no consistent code validation procedure is applied within the industry. Such a procedure is needed to increase confidence in CFD and reduce risk in the use of these codes as a design and analysis tool. This final contract report defines classifications for three levels of code validation, directly relating the use of CFD codes to the engineering design cycle. Evaluation criteria by which codes are measured and classified are recommended and discussed. Criteria for selecting experimental data against which CFD results can be compared are outlined. A four phase CFD code validation procedure is described in detail. Finally, the code validation procedure is demonstrated through application of the REACT CFD code to a series of cases culminating in a code to data comparison on the Space Shuttle Main Engine High Pressure Fuel Turbopump Impeller
Material-Specific Investigations of Correlated Electron Systems
We present the results of numerical studies for selected materials with
strongly correlated electrons using a combination of the local-density
approximation and dynamical mean-field theory (DMFT). For the solution of the
DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed.
All simulations were performed on the supercomputer HLRB II at the Leibniz
Rechenzentrum in Munich. Specifically we have analyzed the pressure induced
metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the
fluctuating-valence elemental metal Yb, and the spectral properties of a
covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in
Science and Engineering, Garching 2009" (Springer
Playing in the dark with online games for girls
Pregnant Rapunzel Emergency is part of a series of online free games aimed at young girls (forhergames.com or babygirlgames.com), where dozens of characters from fairy tales, children’s toys and media feature in recovery settings, such as ‘Barbie flu’. The range of games available to choose from includes not only dressing, varnishing nails or tidying messy rooms, but also rather more troubling options such as extreme makeovers, losing weight, or a plethora of baby showers, cravings, hospital pregnancy checks, births (including caesarean), postnatal ironing, washing and baby care. Taking the online game Pregnant Rapunzel Emergency as an exemplar of a current digital trend, the authors explore the workings of ‘dark digital play’ from a number of perspectives – one by each named author. The game selected has (what may appear to adults) several disturbing features in that the player is invited to treat wounds of the kind of harm that might usually be associated with domestic violence towards women
Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes
Online Correction for: https://doi.org/10.1038/s41586-020-2493-4 | Erratum for https://bura.brunel.ac.uk/handle/2438/21299In the version of this article initially published, two members of the ENCODE Project Consortium were missing from the author list. Rizi Ai (Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA) and Shantao Li (Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA) are now included in the author list. These errors have been corrected in the online version of the article : 'Expanded encyclopaedias of DNA elements in the human and mouse genomes'.https://www.nature.com/articles/s41586-021-04226-3https://www.nature.com/articles/s41586-021-04226-
Evolution of sex-specific pace-of-life syndromes: genetic architecture and physiological mechanisms
Sex differences in life history, physiology, and behavior are nearly ubiquitous across taxa, owing to sex-specific selection that arises from different reproductive strategies of the sexes. The pace-of-life syndrome (POLS) hypothesis predicts that most variation in such traits among individuals, populations, and species falls along a slow-fast pace-of-life continuum. As a result of their different reproductive roles and environment, the sexes also commonly differ in pace-of-life, with important consequences for the evolution of POLS. Here, we outline mechanisms for how males and females can evolve differences in POLS traits and in how such traits can covary differently despite constraints resulting from a shared genome. We review the current knowledge of the genetic basis of POLS traits and suggest candidate genes and pathways for future studies. Pleiotropic effects may govern many of the genetic correlations, but little is still known about the mechanisms involved in trade-offs between current and future reproduction and their integration with behavioral variation. We highlight the importance of metabolic and hormonal pathways in mediating sex differences in POLS traits; however, there is still a shortage of studies that test for sex specificity in molecular effects and their evolutionary causes. Considering whether and how sexual dimorphism evolves in POLS traits provides a more holistic framework to understand how behavioral variation is integrated with life histories and physiology, and we call for studies that focus on examining the sex-specific genetic architecture of this integration
- …