1,379 research outputs found

    DC-Prophet: Predicting Catastrophic Machine Failures in DataCenters

    Full text link
    When will a server fail catastrophically in an industrial datacenter? Is it possible to forecast these failures so preventive actions can be taken to increase the reliability of a datacenter? To answer these questions, we have studied what are probably the largest, publicly available datacenter traces, containing more than 104 million events from 12,500 machines. Among these samples, we observe and categorize three types of machine failures, all of which are catastrophic and may lead to information loss, or even worse, reliability degradation of a datacenter. We further propose a two-stage framework-DC-Prophet-based on One-Class Support Vector Machine and Random Forest. DC-Prophet extracts surprising patterns and accurately predicts the next failure of a machine. Experimental results show that DC-Prophet achieves an AUC of 0.93 in predicting the next machine failure, and a F3-score of 0.88 (out of 1). On average, DC-Prophet outperforms other classical machine learning methods by 39.45% in F3-score.Comment: 13 pages, 5 figures, accepted by 2017 ECML PKD

    NADP-Dependent Isocitrate Dehydrogenase from Arabidopsis Roots Contributes in the Mechanism of Defence against the Nitro-Oxidative Stress Induced by Salinity

    Get PDF
    NADPH regeneration appears to be essential in the mechanism of plant defence against oxidative stress. Plants contain several NADPH-generating dehydrogenases including isocitrate dehydrogenase (NADP-ICDH), glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), and malic enzyme (ME). In Arabidopsis seedlings grown under salinity conditions (100 mM NaCl) the analysis of physiological parameters, antioxidant enzymes (catalase and superoxide dismutase) and content of superoxide radical (O2  ∙−), nitric oxide (NO), and peroxynitrite (ONOO−) indicates a process of nitro-oxidative stress induced by NaCl. Among the analysed NADPH-generating dehydrogenases under salinity conditions, the NADP-ICDH showed the maximum activity mainly attributable to the root NADP-ICDH. Thus, these data provide new insights on the relevance of the NADP-ICDH which could be considered as a second barrier in the mechanism of response against the nitro-oxidative stress generated by salinity

    Vinyl sulfone silica: application of an open preactivated support to the study of transnitrosylation of plant proteins by S-nitrosoglutathione

    Get PDF
    Background S-nitrosylaton is implicated in the regulation of numerous signaling pathways with a diversity of regulatory roles. The high lability of the S-NO bond makes the study of proteins regulated by S-nitrosylation/denitrosylation a challenging task and most studies have focused on already S-nitrosylated proteins. We hypothesize that: i) S-nitrosoglutathione (GSNO) transnitrosylation is a feasible mechanism to account for the physiological S-nitrosylation of rather electropositive sulfur atoms from proteins, ii) affinity chromatography is a suitable approach to isolate proteins that are prone to undergo S-transnitrosylation and iii) vinyl sulfone silica is a suitable chromatographic bead.Results The combination of vinyl sulfone silica with GSNO yielded an affinity resin that withstood high ionic strength without shrinking or deforming and that it was suitable to isolate potential GSNO transnitrosylation target candidates. Fractions eluted at 1500 mM NaCl resulted in a symmetrical peak for both, protein and S-nitrosothiols, supporting the idea of transnitrosylation by GSNO as a selective process that involves strong and specific interactions with the target protein. Proteomic analysis led to the identification of 22 physiological significant enzymes that differ with the tissue analyzed, being regulatory proteins the most abundant group in hypocotyls. The identification of chloroplastidic FBPase, proteasome, GTP-binding protein, heat shock Hsp70, syntaxin, catalase I, thioredoxin peroxidase and cytochrome P450 that have already been reported as S-nitrosylated by other techniques can be considered as internal positive controls that validate our experimental approach. An additional validation was provided by the prediction of the S-nitrosylation sites in 19 of the GSNO transnitrosylation target candidates.Conclusions Vinyl sulfone silica is an open immobilization support that can be turned ad hoc and in a straightforward manner into an affinity resin. Its potential in omic sciences was successfully put to test in the context of the analysis of post-translational modification by S-nitrosylation with two different tissues: mature pea leaves and embryogenic sunflower hypocotyls. The identified proteins reveal an intriguing overlap among S-nitrosylation and both tyrosine nitration and thioredoxin regulation. Chloroplastidic FBPase is a paradigm of such overlap of post-translational modifications since it is reversible modified by thioredoxin and S-nitrosylation and irreversibly by tyrosine nitration. Our results suggest a complex interrelation among different modulation mechanisms mediated by NO-derived molecules.Financial Support was provided by Dirección General de Investigacion Cientıfica y Técnica (DGICYT) (CTQ2008-01754), Junta de Andalucía (P07-FQM-02899), Universidad de Jaén campus de Excelencia Internacional Agroalimentario ceiA3 and by ERDF-cofinanced grants from Ministry of Science and Innovation (BIO2012-33904) and Junta de Andalucía (research groups BIO286 and BIO192). We also acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)

    Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation

    Get PDF
    JBM acknowledges a PhD fellowship (F.P.U.) from the Ministry of Science and Innovation. This work was supported by an ERDF-co-financed grant from the Ministry of Science and Innovation (BIO2009-12003-C02-01, BIO2009-12003-C02-02, and BIO2012-33904) and Junta de Andalucia (group BIO286 and BIO192), Spain. LC/MS/MS analyses were carried out at the Laboratorio de Proteomica LP-CSIC/UAB, a member of the ProteoRed network. Technical and human support provided by CICT of Universidad de Jaen (UJA, MINECO, Junta de Andalucia, FEDER) is gratefully acknowledged. We acknowledge Mr Carmelo Ruiz-Torres for his excellent technical support.Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.Spanish GovernmentERDF from the Ministry of Science and Innovation BIO2009-12003-C02-01 BIO2009-12003-C02-02 BIO2012-33904Junta de Andalucia BIO286 BIO192CICT of Universidad de Jaen (UJA, MINECO, Junta de Andalucia, FEDER

    Differential molecular response of monodehydroascorbate reductase and glutathione reductase by nitration and S-nitrosylation

    Get PDF
    The ascorbate–glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO– and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO–. The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADPbinding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO–. These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO– or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150 mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate–glutathione cycle by nitric oxide (NO)- PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants.Spanish GovernmentERDF - Ministry of Economy and Competitiveness BIO2012-33904Junta de Andalucía BIO286 BIO19

    Estudio de las especies de nitrógeno reactivo en plantas durante el proceso de estrés biótico en la interacción girasol-mildiu

    Get PDF
    En hipocótilos de plántulas de girasol sensibles y resistentes a la infección por el hongo parásito Plasmopara halstedii, responsable del mildiu, los análisis mediante quimioluminiscencia de ozono revelaron una mayor producción de óxido nítrico en la variedad sensible frente a la resistente, tanto en plantas controles como en plantas inoculadas.La inmunolocalización mediante microscopía de fluorescencia y microscopía confocal láser mostró la localización extensiva de NOS (Óxido nítrico sintasa) y Snitrosoglutation (GSNO) en células parenquimáticas. La lozalización tisular preferente del GSNO en la zona de entrada del patógeno en el hipocótilo, evidencia la posible participación del óxido nítrico en los mecanismos de defensa celulares de respuesta inmediata frente a la invasión por patógenos y antes de la inducción de la producción de óxido nítrico por las proteínas responsables de su generación.El análisis de estos resultados evidencia la presencia en células de hipocótilos de girasol de proteínas tipo NOS y sugiere la participación de la NOS, del óxido nítrico (NO·) y del GSNO en la respuesta de la planta frente al estrés biótico por el hongo Plasmopara halstedii

    The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    Get PDF
    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve

    Coordinación interdisciplinar de aplicaciones biomatemáticas

    Get PDF
    La definición más simplista de la interdisciplinaridad podría resumirse como “interacción entre dos o más disciplinas”, pero este punto de vista es extremadamente naïf y podría llevarnos a error. Además de una interacción entre las disciplinas debe de existir intercomunicación y enriquecimiento recíproco entre ellas. En los actuales currículos oficiales de nuestro país, tras el listado de áreas de conocimiento, se incide en la necesidad de que los contenidos se deben de incorporar al proceso educativo en un enfoque global para así permitir abordar los problemas, situaciones y acontecimientos dentro de un contexto y en su totalidad.Muchos autores a lo largo de las últimas décadas han planteado diferentes formas de aplicar la interdisciplinaridad para que ésta fuese más eficaz en el aula. Follari (1980) señaló dos modalidades básicas de interdisciplinaridad, una más enfocada a la conformación de un nuevo objeto teórico entre dos ciencias previas, y una segunda basada en aplicar a un mismo objeto práctico de elementos teóricos de diferentes disciplinas; es esta segunda forma de ver la interdisciplinaridad la que muchos autores posteriores han apoyado y la que creemos puede ser la manera de hacer coincidir las diferentes disciplinas alrededor de un mismo contenido concreto y así ser más productiva en el aula
    corecore