109 research outputs found

    Influence of processing on the volatile profile of strawberry spreads made with isomaltulose

    Full text link
    [EN] A new strawberry spread formulated with fructose and isomaltulose (replacing sucrose partially or totally) and a high percentage of fruit was developed in line with the new trend of healthier products. This work studies the influence of some process variables (percentage of sugar, pectin and citric acid, and time of thermal treatment) on the volatile profile of these spreads with different formulations. The ripeness of the raw strawberries influences the concentrations of some of the compounds in the spreads, such as isobutyl acetate, butyl butyrate, 3-hexen-1-yl acetate or propan-2-ol. The process conditions have an important effect on the volatile profiles. Most of the esters and alcohols decreased whereas 13 new compounds appear, mostly furans (furfural, 2-acetylfurane, 5-methyl furfural, mesifurane) and aldehydes (octanal, nonanal, decanal and benzaldeyhde). In general, the spreads formulated with sucrose-isomaltulose that contained higher levels of pectin and citric acid gave better results in the preservation of the original aromatic compounds in raw strawberries.Authors would like to thank Direccion General de Investigacion del Ministerio de Ciencia y Tecnologia (AGL2008-01745/ALI) as well as the Universitat Politecnica de Valencia for the financial support given to this investigation.Peinado Pardo, I.; Rosa Barbosa, EM.; Heredia Gutiérrez, AB.; Escriche Roberto, MI.; Andrés Grau, AM. (2013). Influence of processing on the volatile profile of strawberry spreads made with isomaltulose. Food Chemistry. 138(1):621-629. https://doi.org/10.1016/j.foodchem.2012.09.104S621629138

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF

    Conceptualizing historical organization studies

    Get PDF
    © 2016 Academy of Management Review. The promise of a closer union between organizational and historical research has long been recognized. However, its potential remains unfulfilled: The authenticity of theory development expected by organization studies and the authenticity of historical veracity required by historical research place exceptional conceptual and empirical demands on researchers. We elaborate the idea of historical organization studies-organizational research that draws extensively on historical data, methods, and knowledge to promote historically informed theoretical narratives attentive to both disciplines. Building on prior research, we propose a typology of four differing conceptions of history in organizational research: History as evaluating, explicating, conceptualizing, and narrating. We identify five principles of historical organization studies-dual integrity, pluralistic understanding, representational truth, context sensitivity, and theoretical fluency-and illustrate our typology holistically from the perspective of institutional entrepreneurship. We explore practical avenues for a creative synthesis, drawing examples from social movement research and microhistory. Historically informed theoretical narratives whose validity derives from both historical veracity and conceptual rigor afford dual integrity that enhances scholarly legitimacy, enriching understanding of historical, contemporary, and future-directed social realities

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Toward Transatlantic Convergence in Financial Regulation

    Full text link
    • 

    corecore