21,647 research outputs found
Recommended from our members
The first signs of language: Phonological development in British sign language
A total of 1018 signs in one deaf child’s naturalistic interaction with her deaf mother, between the ages 19-24 months were analysed. This study summarises regular modification processes in the phonology of the child sign’s handshape, location, movement and prosody. Firstly changes to signs were explained by the notion of phonological markedness. Secondly, the child managed her production of first signs through two universal processes: structural change and substitution. Constraints unique to the visual modality also caused sign language specific acquisition patterns, namely: more errors for handshape articulation in locations in peripheral vision, a high frequency of whole sign repetitions and feature group rather than one-to-one phoneme substitutions as in spoken language development
Therapist and client experiences of art therapy in relation to psychosis: a thematic analysis
Background: Evidenced-based theory of art therapy for people experiencing psychosis is relatively under-developed, especially in terms of the detail of what happens in art therapy sessions, and the role of the artmaking.
Aims: To explore in-session processes of art therapy from the viewpoint of both service users and art therapists using reflexive thematic analysis.
Method: Twelve participants, six service users and six art therapists, were interviewed.
Results: From the analysis, four main themes were created, specifically ‘safe space’, ‘power of artmaking’, ‘challenges’ and ‘supporting recovery’.
Conclusions: The findings offer triangulated themes from art therapists and service users and explicate the role of the artmaking. Artmaking offers service users a space to express and contain their feelings, needs, wishes and fears within the artwork. This can start a dialogue and provides them with an opportunity to shift how they view their artwork and themselves.
Practice implications: Artmaking helps service users express non-verbal and embodied material, which could then be explored through a therapeutic dialogue. Service users who struggle with verbalising their thoughts and feelings may particularly benefit from art therapy
Perturbative Effective Theory in an Oscillator Basis?
The effective interaction/operator problem in nuclear physics is believed to
be highly nonperturbative, requiring extended high-momentum spaces for accurate
solution. We trace this to difficulties that arise at both short and long
distances when the included space is defined in terms of a basis of harmonic
oscillator Slater determinants. We show, in the simplest case of the deuteron,
that both difficulties can be circumvented, yielding highly perturbative
results in the potential even for modest (~6hw) included spaces.Comment: 10 pages, 4 figure
Effect of frequency mismatched photons in quantum information processing
Many promising schemes for quantum information processing (QIP) rely on
few-photon interference effects. In these proposals, the photons are treated as
being indistinguishable particles. However, single photon sources are typically
subject to variation from device to device. Thus the photons emitted from
different sources will not be perfectly identical, and there will be some
variation in their frequencies. Here, we analyse the effect of this frequency
mismatch on QIP schemes. As examples, we consider the distributed QIP protocol
proposed by Barrett and Kok, and Hong-Ou-Mandel interference which lies at the
heart of many linear optical schemes for quantum computing. In the distributed
QIP protocol, we find that the fidelity of entangled qubit states depends
crucially on the time resolution of single photon detectors. In particular,
there is no reduction in the fidelity when an ideal detector model is assumed,
while reduced fidelities may be encountered when using realistic detectors with
a finite response time. We obtain similar results in the case of Hong-Ou-Mandel
interference -- with perfect detectors, a modified version of quantum
interference is seen, and the visibility of the interference pattern is reduced
as the detector time resolution is reduced. Our findings indicate that problems
due to frequency mismatch can be overcome, provided sufficiently fast detectors
are available.Comment: 14 pages, 8 figures. Comments welcome. v2: Minor changes. v3: Cleaned
up 3 formatting error
A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio
No Signalling and Quantum Key Distribution
Standard quantum key distribution protocols are provably secure against
eavesdropping attacks, if quantum theory is correct. It is theoretically
interesting to know if we need to assume the validity of quantum theory to
prove the security of quantum key distribution, or whether its security can be
based on other physical principles. The question would also be of practical
interest if quantum mechanics were ever to fail in some regime, because a
scientifically and technologically advanced eavesdropper could perhaps use
post-quantum physics to extract information from quantum communications without
necessarily causing the quantum state disturbances on which existing security
proofs rely. Here we describe a key distribution scheme provably secure against
general attacks by a post-quantum eavesdropper who is limited only by the
impossibility of superluminal signalling. The security of the scheme stems from
violation of a Bell inequality.Comment: Clarifications and minor revisions in response to comments. Final
version; to appear in Phys. Rev. Let
Extrapolation Method for the No-Core Shell Model
Nuclear many-body calculations are computationally demanding. An estimate of
their accuracy is often hampered by the limited amount of computational
resources even on present-day supercomputers. We provide an extrapolation
method based on perturbation theory, so that the binding energy of a large
basis-space calculation can be estimated without diagonalizing the Hamiltonian
in this space. The extrapolation method is tested for 3H and 6Li nuclei. It
will extend our computational abilities significantly and allow for reliable
error estimates.Comment: 8 pages, 7 figures, PRC accepte
Somatostatin agonist pasireotide inhibits exercise stimulated growth in the male Siberian hamster (Phodopus sungorus)
R.Dumbell was supported by a University of Aberdeen PhD studentship and a research visit grant awarded by the British Society of Neuroendocrinology. Further support was provided by the Scottish Government Rural and Environment Science and Analytical Services Division (Barrett and the German Research Foundation (DFG; STE 331/8-1; Steinlechner lab). We are grateful for technical assistance from Dana Wilson at RINH and Siegried Hiliken at UVMH, and thank Dr Claus-Dieter Mayer of Biomathematics & Statistics Scotland for valuable advice on statistical analysis.Peer reviewedPostprin
Band Mapping in One-Step Photoemission Theory: Multi-Bloch-Wave Structure of Final States and Interference Effects
A novel Bloch-waves based one-step theory of photoemission is developed
within the augmented plane wave formalism. Implications of multi-Bloch-wave
structure of photoelectron final states for band mapping are established.
Interference between Bloch components of initial and final states leads to
prominent spectral features with characteristic frequency dispersion
experimentally observed in VSe_2 and TiTe_2. Interference effects together with
a non-free-electron nature of final states strongly limit the applicability of
the common direct transitions band mapping approach, making the tool of
one-step analysis indispensable.Comment: 4 jpg figure
Cavity QED with optically transported atoms
Ultracold Rb atoms are delivered into a high-finesse optical
micro-cavity using a translating optical lattice trap and detected via the
cavity field. The atoms are loaded into an optical lattice from a magneto-optic
trap (MOT) and transported 1.5 cm into the cavity. Our cavity satisfies the
strong-coupling requirements for a single intracavity atom, thus permitting
real-time observation of single atoms transported into the cavity. This
transport scheme enables us to vary the number of intracavity atoms from 1 to
100 corresponding to a maximum atomic cooperativity parameter of 5400, the
highest value ever achieved in an atom--cavity system. When many atoms are
loaded into the cavity, optical bistability is directly measured in real-time
cavity transmission.Comment: 4 figures, 4 page
- …