1,878 research outputs found

    On the definition of temperature in dense granular media

    Full text link
    In this Letter we report the measurement of a pseudo-temperature for compacting granular media on the basis of the Fluctuation-Dissipation relations in the aging dynamics of a model system. From the violation of the Fluctuation-Dissipation Theorem an effective temperature emerges (a dynamical temperature T_{dyn}) whose ratio with the equilibrium temperature T_d^{eq} depends on the particle density. We compare the results for the Fluctuation-Dissipation Ratio (FDR) T_{dyn}/T_d^{eq} at several densities with the outcomes of Edwards' approach at the corresponding densities. It turns out that the FDR and the so-called Edwards' ratio coincide at several densities (very different ages of the system), opening in this way the door to experimental checks as well as theoretical constructions.Comment: RevTex4 4 pages, 4 eps figure

    Basins of attraction of metastable states of the spherical pp-spin model

    Full text link
    We study the basins of attraction of metastable states in the spherical pp-spin spin glass model, starting the relaxation dynamics at a given distance from a thermalized condition. Weighting the initial condition with the Boltzmann distribution we find a finite size for the basins. On the contrary, a white weighting of the initial condition implies vanishing basins of attraction. We make the corresponding of our results with the ones of a recently constructed effective potential.Comment: LaTeX, 7 pages, 7 eps figure

    Mutual selection in time-varying networks

    Get PDF
    Copyright @ 2013 American Physical SocietyTime-varying networks play an important role in the investigation of the stochastic processes that occur on complex networks. The ability to formulate the development of the network topology on the same time scale as the evolution of the random process is important for a variety of applications, including the spreading of diseases. Past contributions have investigated random processes on time-varying networks with a purely random attachment mechanism. The possibility of extending these findings towards a time-varying network that is driven by mutual attractiveness is explored in this paper. Mutual attractiveness models are characterized by a linking function that describes the probability of the existence of an edge, which depends mutually on the attractiveness of the nodes on both ends of that edge. This class of attachment mechanisms has been considered before in the fitness-based complex networks literature but not on time-varying networks. Also, the impact of mutual selection is investigated alongside opinion formation and epidemic outbreaks. We find closed-form solutions for the quantities of interest using a factorizable linking function. The voter model exhibits an unanticipated behavior as the network never reaches consensus in the case of mutual selection but stays forever in its initial macroscopic configuration, which is a further piece of evidence that time-varying networks differ markedly from their static counterpart with respect to random processes that take place on them. We also find that epidemic outbreaks are accelerated by uncorrelated mutual selection compared to previously considered random attachment

    Continuum limit of amorphous elastic bodies (III): Three dimensional systems

    Full text link
    Extending recent numerical studies on two dimensional amorphous bodies, we characterize the approach of elastic continuum limit in three dimensional (weakly polydisperse) Lennard-Jones systems. While performing a systematic finite-size analysis (for two different quench protocols) we investigate the non-affine displacement field under external strain, the linear response to an external delta force and the low-frequency harmonic eigenmodes and their density distribution. Qualitatively similar behavior is found as in two dimensions. We demonstrate that the classical elasticity description breaks down below an intermediate length scale ξ\xi, which in our system is approximately 23 molecular sizes. This length characterizes the correlations of the non-affine displacement field, the self-averaging of external noise with distance from the source and gives the lower wave length bound for the applicability of the classical eigenfrequency calculations. We trace back the "Boson-peak" of the density of eigenfrequencies (obtained from the velocity auto-correlation function) to the inhomogeneities on wave lengths smaller than ξ\xi.Comment: 27 pages, 11 figures, submitted to Phys. Rev.

    Mean-field diffusive dynamics on weighted networks

    Get PDF
    Diffusion is a key element of a large set of phenomena occurring on natural and social systems modeled in terms of complex weighted networks. Here, we introduce a general formalism that allows to easily write down mean-field equations for any diffusive dynamics on weighted networks. We also propose the concept of annealed weighted networks, in which such equations become exact. We show the validity of our approach addressing the problem of the random walk process, pointing out a strong departure of the behavior observed in quenched real scale-free networks from the mean-field predictions. Additionally, we show how to employ our formalism for more complex dynamics. Our work sheds light on mean-field theory on weighted networks and on its range of validity, and warns about the reliability of mean-field results for complex dynamics.Comment: 8 pages, 3 figure

    Gender homophily from spatial behavior in a primary school: a sociometric study

    Full text link
    We investigate gender homophily in the spatial proximity of children (6 to 12 years old) in a French primary school, using time-resolved data on face-to-face proximity recorded by means of wearable sensors. For strong ties, i.e., for pairs of children who interact more than a defined threshold, we find statistical evidence of gender preference that increases with grade. For weak ties, conversely, gender homophily is negatively correlated with grade for girls, and positively correlated with grade for boys. This different evolution with grade of weak and strong ties exposes a contrasted picture of gender homophily

    Dynamical Monte Carlo Study of Equilibrium Polymers (II): The Role of Rings

    Get PDF
    We investigate by means of a number of different dynamical Monte Carlo simulation methods the self-assembly of equilibrium polymers in dilute, semidilute and concentrated solutions under good-solvent conditions. In our simulations, both linear chains and closed loops compete for the monomers, expanding on earlier work in which loop formation was disallowed. Our findings show that the conformational properties of the linear chains, as well as the shape of their size distribution function, are not altered by the formation of rings. Rings only seem to deplete material from the solution available to the linear chains. In agreement with scaling theory, the rings obey an algebraic size distribution, whereas the linear chains conform to a Schultz--Zimm type of distribution in dilute solution, and to an exponentional distribution in semidilute and concentrated solution. A diagram presenting different states of aggregation, including monomer-, ring- and chain-dominated regimes, is given

    First-order transition in small-world networks

    Full text link
    The small-world transition is a first-order transition at zero density pp of shortcuts, whereby the normalized shortest-path distance undergoes a discontinuity in the thermodynamic limit. On finite systems the apparent transition is shifted by Δp∼L−d\Delta p \sim L^{-d}. Equivalently a ``persistence size'' L∗∼p−1/dL^* \sim p^{-1/d} can be defined in connection with finite-size effects. Assuming L∗∼p−τL^* \sim p^{-\tau}, simple rescaling arguments imply that τ=1/d\tau=1/d. We confirm this result by extensive numerical simulation in one to four dimensions, and argue that τ=1/d\tau=1/d implies that this transition is first-order.Comment: 4 pages, 3 figures, To appear in Europhysics Letter

    Compaction dynamics of a granular media under vertical tapping

    Full text link
    We report new experimental results on granular compaction under consecutive vertical taps. The evolution of the mean volume fraction and of the mean potential energy of a granular packing presents a slow densification until a final steady-state, and is reminiscent to usual relaxation in glasses via a stretched exponential law. The intensity of the taps seems to rule the characteristic time of the relaxation according to an Arrhenius's type relation >. Finally, the analysis of the vertical volume fraction profile reveals an almost homogeneous densification in the packing.Comment: 7 pages, 4 figures, to appear in Europhysics Letter

    Driven activation versus thermal activation

    Full text link
    Activated dynamics in a glassy system undergoing steady shear deformation is studied by numerical simulations. Our results show that the external driving force has a strong influence on the barrier crossing rate, even though the reaction coordinate is only weakly coupled to the nonequilibrium system. This "driven activation" can be quantified by introducing in the Arrhenius expression an effective temperature, which is close to the one determined from the fluctuation-dissipation relation. This conclusion is supported by analytical results for a simplified model system.Comment: 5 pages, 3 figure
    • …
    corecore