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Time-varying networks play an important role in the investigation of the stochastic processes that
occur on complex networks. The ability to formulate the development of the network topology on
the same time scale as the evolution of the random process is important for a variety of applications
including the spreading of diseases. Past contributions have investigated random processes on time-
varying networks with a purely random attachment mechanism. The possibility of extending these
findings towards a time-varying network that is driven by mutual attractiveness is explored in this
paper. Mutual attractiveness models are characterized by a linking function that describes the
probability of the existence of an edge, which depends mutually on the attractiveness of the nodes
on both ends of that edge. This class of attachment mechanisms has been considered before in
the fitness based complex networks literature, but not on time-varying networks. Also, the impact
of mutual selection is investigated alongside opinion formation and epidemic outbreaks. We find
closed form solutions for the quantities of interest using a factorisable linking function. The voter
model exhibits an unanticipated behavior as the network never reaches consensus in the case of
mutual selection, but stays forever in its initial macroscopic configuration, which is a further piece
of evidence that time-varying networks are very different from their static counterpart with respect
to random processes that take place on them. We also find that epidemic outbreaks are accelerated
by uncorrelated mutual selection compared to previously considered random attachment.

PACS numbers: 89.75.Hc, 87.10.Mn

I. INTRODUCTION

Complex networks have been studied extensively over
the last decade. However, this research is usually not
conducted as an end in itself, but instead aims towards
a better understanding of dynamical processes that take
place on a network topology. Many contributions to these
epidemiological models assume that the evolution of the
network and the unfoldment of the dynamical process
operate on two very different time scales, such that the
network evolves more slowly than the dynamical process
on top of it [1, 2]. However, this is a very restrictive
assumption that does not hold in many circumstances.
For a virus to spread, two individuals must be in contact
when at least one of them is infected. The fact that
these two individuals are linked in a static network, i.e.
by friendship does not necessarily mean that the virus is
passed on through their shared edge.
In recent years the field of temporal networks has at-

tracted increasing attention and several different names
have emerged in the literature, such as temporal graphs,
dynamic networks, evolving graphs, time-varying graphs,
. . . etc. [3]. The origin of these networks comes from real
world phenomena like face-to-face contacts or the phone
call network, to name just a few. The central motivation
is that edges are not persistent but can occur and be
withdrawn within a short time. This has a direct impact
on processes that take place on networks. While clas-
sical models consider the time-scale of the process to be
much shorter than the time-scale of the network evolution
[2, 4–6], the processes taking place on temporal networks
have the same time-scale as fluctuations of the network
topology. The issue that arises here becomes immedi-

ately evident if transitivity is taken into consideration.
On a static graph edges are transitive, so if for example
there exists a link (A,B), and a link (A,C), then there
exists as well an indirect path between nodes B and C
via node A. In a temporal network, this transitivity no
longer exists if the edges (A,C) and (A,B) exist during
different instances of the network [3].

A temporal network and its integration can be under-
stood in terms of the daily social life of inhabitants of
a town. Each day forms an instance of a temporal net-
work, that starts initially empty. Contacts met during
the day build the links in this instance. On the following
day the network instance of social contacts starts empty
again. All these network instances for many days can be
joined to build the integrated network, which aggregates
all instances to a social graph that describes the net-
work of acquaintances. This integrated network is what
is observed if one analyzes the social graph of Facebook.
However, taking the single instances into account rather
than the aggregation as it is done in the classical complex
networks literature adds information as outlined above.
In this particular example one could think of the spread
of a rumor. Modeling the spread of a rumor with the in-
tegrated, static network will bias the outcome, since the
rumor will not spread across edges that are not active at
the time the rumor arrives at a particular node.

An excellent overview of the various applications of
temporal networks in many disciplines can be found in
[3]. The applications range from person-to-person com-
munication [7–9], cell biology and brain networks [10, 11],
to aspects of distributed computing and seasonal food
webs [3]. Another example of a time-varying network
is the evolution of groups. In- and outflux of groups in
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conferences have been studied in [12, 13].

One essential difference between temporal networks
and their static counterpart is the development of node
centrality. Node centrality measures the importance of a
node within a graph. Measuring centrality is for exam-
ple used when devising an optimal vaccination strategy
or designing a successful marketing campaign. In classi-
cal networks, that are driven by preferential attachment
for instance, the centrality of a node is monotone, new
nodes connect preferentially to central nodes in the net-
work. It is therefore correct to assume that once a central
node is found it will stay central for the life-time of the
network. Therefore this node is assumed to serve well
as an entry point for all sorts of campaigns. Temporal
networks are very different in this respect. A node that
is central in one instance can be entirely disconnected
in the following time step. Therefore successful immu-
nization strategies or information campaigns will need to
take these fluctuations into account [14].

Recently, a model of a temporal fitness driven network
has been investigated in [15]. Every node in that net-
work is endowed with an intrinsic activity random vari-
able that controls the probability that this node becomes
active and initiates m new links in an instance of the net-
work. The targets of these new links are chosen at ran-
dom. However, several networks have been found to be
driven by mutual agreement rather than just one sided
selection, the world trade network is one example [16].
An earlier example of a temporal network that is driven
by mutual selection, encountering an adverse process in
this topology is presented in [17]. The network model un-
der consideration is the formation of sexual relationships
and the aim of the study is to investigate the pattern of
spreading diseases on this network. Pairs in this network
are not chosen randomly, but with a function ϕ(k1, k2)
that depends on the node degree, hence on the number
of sexual relationships already existing. Diffusion and
transport problems on this type of network have been
studied in [15, 18]

The present article extends the work of [15], by tak-
ing mutual preferences during the edge formation pro-
cess into account. The effect of mutual selection on the
topology is already well understood for static [19, 20]
and dynamic networks. [21]. However, it has not yet
been considered for time-varying networks. As well as
the degree distribution, epidemic spread is studied here
and compared to previous results in [15]. Finally, the
present article extends the body of existing literature on
temporal network with a study of opinion formation. The
strikingly surprising result is that consensus is unobtain-
able in a time varying network independent of the form
of the attachment kernel. The analytical results for the
degree distribution and epidemic spreading are derived
for the special case of a separable attachment kernel. All
our analytical findings are backed by extensive numerical
simulations.

II. MODEL

The network model consists of N nodes, that are en-
dowed with an intrinsic random fitness xi, drawn from a
probability density ρ(x). Every instance of the network
Gt is initialized with these N nodes without edges and
persists for a time span of ∆t. With probability ai∆t a
node i becomes active and originates m links, where ai
is the activity parameter of a node, defined as ai = ηxi,
and η is a normalization coefficient to fix the average
number of active nodes per time-step to ηN ⟨x⟩. With
probability 1−ai∆t a node remains inactive, but can re-
ceive links from other active nodes. The destination of a
link depends mutually on the fitness of the origin of the
link xi and the fitness of the destination xj , expressed in
terms of an attachment kernel f(xi, xj).

The integrated network GT is the union of all network

instances prior to time T : GT =
∪T

t=0 Gt. Multiple links,
i.e. links that occurred during several instances are not
counted several times. Merely the existence of a link in
any given instance Gt affects the existence of a link in
the integrated network.

A. Degree distribution

Following the dynamics of all single instances of the
network, the degree distribution of the integrated net-
work at time T is of central interest. For the final degree
distribution, edges that are repeated in various instances
of the network are counted as one. We will see later that
the impact of these multiple edges is anyway neglectable.

The probability that a node i initiates a link towards
a node j during ∆t is defined as

Ω∆t
xi→xj

= aim∆t · f(xi, xj)

N
∫∞
0

f(xi, ξ)ρ(ξ)dξ
. (1)

That is the probability that node i becomes active mul-
tiplied with the probability that a node with fitness xi

initiates a link towards a node with fitness xj . Fur-
ther, denote the probability that there exists a link be-
tween nodes i and j in the aggregated network at time
t with pij(t) and the probability of non-existence with
p̄ij(t) = 1− pij(t). Since duplications of links during the
aggregation process of all temporal instances are possi-
ble, it is straightforward to write down an equation for
the probability that there exists no link between nodes i
and j, hence the following calculation is based on p̄ij(t),
which obeys this rate equation

p̄ij(t+∆t) = p̄ij(t) · (1− Ω∆t
xi→xj

). (2)

Using the boundary condition p̄ij(0) = 1 since all nodes
are initially disconnected, one obtains

p̄ij(t) = exp

{
− aimtf(xi, xj)

N
∫∞
0

f(xi, ξ)ρ(ξ)dξ

}
. (3)
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Assuming small t/N which necessarily needs to fulfill
t/N ≪ 1, because the aggregated network becomes a
trivial fully connected graph for t/N close to 1 leads to
Eq.(4). To be more precise, the average number of edges
per unit of time is given by 2mη ⟨x⟩, hence the density
of the integrated network at time t is mostly determined
by t/N that must be small for a sparse network.

p̄ij(t) = 1− aimtf(xi, xj)

N
∫∞
0

f(xi, ξ)ρ(ξ)dξ
. (4)

The expected out-degree of a node at time T is given by

koutT (i) =
N∑
j=0

pij(T ) = Tmai. (5)

Since the expected number of links that are initiated dur-
ing a given time-step by a node with activity a is ∆tam,
Tmai then is the expected number of edges that origi-
nate from a node after T/∆t time-steps. Hence multiple
edges occurring during the aggregation process can be
neglected.
The total degree of a node is the sum of the in-degree

and the out-degree without duplications. In order to
properly count, the in-degree here is similarly defined
as in [15]. It is the number of edges pointing towards a
node in the integrated network which have never been
reciprocated. This quantity can be expressed solely in
terms of pij(t)

kinT (i) =
N∑
j=0

pji(T ) · p̄ij(T ) (6)

≃ mT

N

N∑
j=0

ajf(xj , xi)∫∞
0

f(xj , ξ)ρ(ξ)dξ
. (7)

The total degree of a node is then given by kT (i) =
kinT (i) + koutT (i)

kT (i) = Tmai +
mT

N

N∑
j=0

ajf(xj , xi)∫∞
0

f(xj , ξ)ρ(ξ)dξ
. (8)

Rewriting this equation in a continuous fitness represen-
tation which is approximately correct for large N , one
obtains

k(x) = Tmηx+ Tmη

∫ ∞

0

σf(σ, x)∫∞
0

f(σ, ξ)ρ(ξ)dξ
ρ(σ)dσ. (9)

Assuming a factorisable form of f(x, y) = g(x)h(y),
Eq.(9) becomes

k(x) = Tmη ·
(
x+ h(x) · ⟨x⟩

⟨h⟩

)
(10)

where ⟨h⟩ =
∫ ∞

0

h(x)ρ(x)dx. (11)

The form of the degree distribution p(k) depends on the
choice of f(x, y), respectively g(x) and h(y). Consider
for example f(x, y) = xy. In this case, Eq.(10) becomes

kT (i) = 2Tmai ⇔ x(k) =
k

2Tmη
. (12)

Using now that p(k)dk ∼ ρ(x)dx

p(k) = ρ(x(k))
dx

dk
(13)

= ρ

(
k

2Tmη

)
· 1

2Tmη
. (14)

Hence the form of p(k) is inherited from the form of ρ(x).
This result is in common with the static fitness model in
[20] for the case f(x, y) = xy. Substituting h(x) = 1 into
Eq.(10) replicates the result of [15]. In order to confirm
this result, a numerical simulation was carried out, with
ρ(x) = e−x, N = 50, 000, T = 1, 000, m = 2 and η = 0.1.
The theoretical results are in excellent agreement with
the numerical results over a wide range of k as Fig.( 1)
shows.
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FIG. 1. Results from numerical simulation with f(x, y) = xy,
ρ(x) = e−x, N = 50, 000, T = 1, 000, m = 2 and η = 0.1,
compared to the prediction (dashed-red) given in Eq.(14).

B. Epidemic spreading

This subsection is dedicated to the problem of epi-
demics on the network and discusses the SIS model with
transition probability λ and recovery time 1/µ [6]. The
quantity of interest here is the number of infected indi-
viduals at time t, denoted by It. The dynamics of this
quantity can be calculated by modeling the dynamics of
the number of infected individuals with activity level a
at time t, denoted with Ita.

The number of infected individuals of class a obeys the
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recurrence relation

It+∆t
a = Ita − µ∆tIta

+ λ(Na − Ita) ·ma∆t ·
∑
a′

f(a, a′)

N
∫∞
0

f(a, ξ)ρ(ξ)dξ
· Ita′

+ λ(Na − Ita) ·
∑
a′

Ita′ma′∆t
f(a′, a)

N
∫∞
0

f(a′, ξ)ρ(ξ)dξ
.

(15)

With Na as the number of nodes in activity class a. The
second term corresponds to the recovery of an infected
individual. The third term quantifies the effect of a sus-
ceptible node to become active and connect to an infected
individual. To be more precise there are (Na − Ita)-many
susceptible individuals with activity level a, each of these
becomes active with probability a∆t. The term inside
the sum is then the probability to connect to an individ-
ual of activity level a′ that is infected. The fourth term
accounts for the possibility that a susceptible node of ac-
tivity level a becomes infected by receiving a link from
an infected node. Hence the term inside the sum corre-
sponds to infected nodes of activity level a′, that connect
to node with activity a and pass on the infection via this
link with rate λ.

The total number of infected individuals can be ob-
tained using

It = N

∫ ∞

0

Itaρ(a)da. (16)

The epidemic threshold is a condition on λ and µ, that
represents the tipping point between an endemic and the
extinction of a virus on a network. Much research has
been conducted, characterizing the epidemic threshold
for particular network topologies [2]. Independent of the
underlying topology of the network, the epidemic thresh-
old is given by the highest eigenvalue of the adjacency
matrix of the network [22, 23]. However, information
on the adjacency matrix is not available in the present
context of a mean-field approximation. A concept for
the mean-field approach that follows elementary consid-
erations of mathematical analysis has been illustrated for
example in [2]. We will use this approach in the following
as well.

In order to find a closed form expression for the epi-
demic threshold, a factorisable, not necessarily symmet-
ric form of f will be considered in the following

f(x, y) = g(x)h(y)

. Behind that the following definitions will be used for
brevity

γt =
∑
a

h(a)Ita and θt =
∑
a

Itaa.

Using these conventions, Eq.(15) becomes

It+∆t
a = Ita − µ∆tIta

+ λ · 1

N
(Na − Ita)ma

∆t

⟨h⟩
∑
a′

h(a′)Ita′

+ λ · 1

N
(Na − Ita)m

h(a)

⟨h⟩
∆t

∑
a′

a′Ita′ .

(17)

The epidemic threshold can then be obtained from here
without further simplifications. Summing Eq.(17) over a
and taking the continuous time limit, one obtains

∂I

∂t
= −µI + λγtm

⟨a⟩
⟨h⟩

+ λθtm. (18)

As a next step, two more equations are introduced by
multiplying Eq.(17) with a and summing to obtain

∂θ

∂t
= −µθ + λγtm

⟨a2⟩
⟨h⟩

+ λθ
⟨ah⟩
⟨h⟩

m. (19)

By multiplying Eq.(17) with h(a) one obtains

∂γ

∂t
= −µγ + λγ

⟨ah⟩
⟨h⟩

m+ λ
⟨h2⟩
⟨h⟩

θtm. (20)

The resulting system of linear differential equations can
be written as ∂I

∂t
∂θ
∂t
∂γ
∂t

 =


−µ λm λ ⟨a⟩

⟨h⟩m

0 −µ+ λ ⟨ah⟩
⟨h⟩ m λ ⟨a2⟩

⟨h⟩ m

0 λ ⟨h2⟩
⟨h⟩ m −µ+ λ ⟨ah⟩

⟨h⟩ m


Iθ
γ

 .

(21)
The solution to this matrix differential equation can be
stated as a polynomial of exponentials of the eigenvalues
of that matrix. Hence the value of the largest eigenvalue
dominates the development of the disease, and controls
whether it dies out or becomes endemic. The epidemic
threshold is therefore given by

Λm = 0. (22)

Whereby Λm is the largest eigenvalue of above matrix.
The eigenvalues are given by

Λ1 = λm
⟨ah⟩
⟨h⟩

−

√
⟨h2⟩
⟨h⟩2

⟨a2⟩ ·mλ− µ (23)

Λ2 = λm
⟨ah⟩
⟨h⟩

+

√
⟨h2⟩
⟨h⟩2

⟨a2⟩ ·mλ− µ (24)

Λ3 = −µ. (25)

Thus the largest eigenvalue is Λ2, and hence the disease
becomes endemic if

λ

µ
>

1

m
· ⟨h⟩
⟨ah⟩+

√
⟨h2⟩ ⟨a2⟩

. (26)
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FIG. 2. Results from numerical simulation for the epidemic
threshold. The plot shows the fraction of infected individuals
I/N vs. λ/µ. The data is collected after T = 104 time-steps in
a network withN = 104 nodes, averaged over 100 simulations,
with η = 0.1, m = 1, ρ(x) = e−x and f(x, y) = xy. The
predicted epidemic threshold from Eq.(26) is λ/µ = 2.5.

Substituting h(a) = 1, Eq.(26) recovers the result of [15].
A numerical simulation shows as well the correctness of
the above result, see Fig.(2). The reproductive number
of the network can further be established in the same way
as in [15], using that the expected number of edges per
unit time is mN ⟨a⟩, leading to an average node degree
of

⟨k⟩t =
2Et

N
= 2m ⟨a⟩ . (27)

Then the critical reproductive number Rc
0 is given by

Rc
0 =

[
λ

µ

]crit
· ⟨k⟩ = 2 ⟨a⟩ ⟨h⟩

⟨ah⟩+
√
⟨h2⟩ ⟨a2⟩

. (28)

To investigate the effect the mutual selection has on the
epidemic properties of the network, two cases will be con-
sidered in the following: h(a) = 1, that is the previously
found result for random selection and h(a) = a, as the
simplest form of mutuality in the selection process. The
epidemic threshold for mutual selection is lower than for
random selection if

⟨a⟩
2 ⟨a2⟩

<
1

⟨a⟩+
√
⟨a2⟩

. (29)

Assuming strictly positive fitness, the only solution to
this inequality is given by

⟨a2⟩ > ⟨a⟩2 . (30)

Hence the epidemic spreads faster in the case of mutual
selection if this condition is fulfilled. Considering that
the form of the degree distribution follows the form of
the fitness distribution (see Eq.(14)) and knowing that
real world networks exhibit very broad distributions [24],

⟨a2⟩ > ⟨a⟩2 is true for many real-world networks and
therefore epidemic spreading is accelerated by mutual se-
lection.

C. Consensus formation

Consensus formation is another commonly consid-
ered random process, that is usually investigated on a
network-type topology. Unlike results on epidemic out-
breaks that were studied in the previous subsection, re-
sults for voter models on time-varying networks do not
exist in the complex networks literature. However, re-
sults for the voter model on heterogeneous graphs exist
[4, 5, 25], which will serve as a benchmark. The quantity
of interest in this section is the number of individuals in
the network with fitness x and positive opinion at a given
time step. N+(x, t), and the traditional voter model [2]
will be considered. The number of individuals with neg-
ative opinion and fitness x will be denoted with N−(x, t).

In the traditional voter model, at every time step one
node is chosen randomly and adopts the opinion of a
randomly chosen neighbor. If the chosen node is not
active and has not received any links during a network
instance, its opinion remains the same. The number of
positive opinions among nodes with fitness x evolves as
follows

N+(x, t+∆t) = N+(x, t)

+ ρ(x)
N−(x, t)

N(x)

N∑
j=1

(Ω∆t
xj→x +Ω∆t

x→xj
)
N+(xj , t)

N(xj)

− ρ(x)
N+(x, t)

N(x)

N∑
j=1

(Ω∆t
xj→x +Ω∆t

x→xj
)
N−(xj , t)

N(xj)
.

(31)

The second term on the right-hand side of Eq.(31) ac-
counts for the increase in the number of positive opinions
in the class of nodes with fitness x. The first part of that
term accounts for the probability that a randomly chosen
node has fitness x and negative opinion, the remainder
of the term inside the sum represents the expected frac-
tion of positive nodes in the neighborhood of x, which is
equal to the probability of choosing a neighbor with pos-
itive opinion, since opinions are dichotomous. The third
term of Eq.(31) represents the opposite process to that
in the second term.

One aspect of voting consensus in temporal networks
can already be inferred from Eq.(31). The consensus, if
at all, is reached very slowly. The terms inside the sums
of Eq.(31) are of order 1/N2, since Ω∆t

xi→xj
is of order

1/N and N(xj) = Nρ(xj). Hence the change of N+(x, t)
is of order 1/N3. Define now the probability that two
nodes with fitness x and xj are linked as

Ψ(x, xj) = Ω∆t
x→xj

+Ω∆t
xj→x (32)

and use N+(x, t) + N−(x, t) = Nρ(x), therefore Eq.(31)
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FIG. 3. Left: Traces for 10 independent simulations of N+(t)
in grey and the average in black. The configuration of the
simulation is f(x, y) = xy, ρ(x) = e−x, m = 1, η = 1/10. The
time horizon is T = 106 time steps and the system contains
N = 104 nodes, with initial configuration N+(0) = 5, 000.
Right: Traces of 20 independent simulations of N+(t) in grey
with average in black. The configuration is f(x, y) = xy,
ρ(x) = e−x, m = 6, η = 1/10. The time horizon is T =
105 time steps with a system size of N = 104 and initial
configuration of N(0) = 2, 500

can be rewritten to

∂N+(x, t)

∂t
= ρ(x)

N∑
j=1

Ψ(x, xj)
N+(xj , t)

Nρ(xj)

− N+(x, t)

N

N∑
j=1

Ψ(x, xj).

(33)

In a steady state, N+(t), does not change, hence
∂N+(x,t)

∂t = 0. This condition is equivalent to

ρ(xi)
∑
j

Ψ(xi, xj)
N+(xj , t)

Nρ(xj)
=

N+(xi, t)

N

∑
j

Ψ(xi, xj).

(34)
Dividing both sides by ρ(xi) and summing over all i, leads

to∑
i

∑
j

Ψ(xi, xj)
N+(xj , t)

Nρ(xj)
=

∑
i

∑
j

N+(xi, t)

Nρ(xi)
Ψ(xi, xj).

(35)
This equation is fulfilled for any value of t, hence con-
sensus can never be reached, moreover, the system stays
forever in its initial configuration. Numerical simulations
have been conducted to verify this result, the develop-
ment of N+(t) for two different configurations can be
found in Fig.(3). The fact that consensus can never be
reached on a time-varying network shows very clearly
how different this class of networks is from classical net-
works. Authors in [5] have shown that the time until
consensus is reached TN , starting from an equally mixed
population on a complete graph is N ln 2 and for hetero-
geneous networks with degree distribution p(k) ∝ k−α

with α < 3, TN ≪ N . Thus consensus is usually reached
reasonably fast. However, it could already been inferred
from Eq.(31), that due to time-varying nature, the opin-
ion update process is slower by several orders of mag-
nitude compared to classic networks. That consensus is
unobtainable is a surprising result.

III. DISCUSSION

The field of time-varying networks is still in its early
developments, but is certainly of great importance for
many real-world applications. The ability to formulate
network evolution and a topology coupled random pro-
cess on the same time-scale enhances the understand-
ing of many real-world phenomena. The present article
has introduced the concept of mutual selection on time-
varying networks. Mutual selection is a concept that is
already understood well for static and dynamic network
models, but has not been considered on time-varying net-
works previously. The present study has shown that mu-
tual selection has a direct impact on the way, epidemics
spread on the network. It has also been pointed out that
independent of the attachment kernel, consensus on a di-
chotomous decision can not be reached within the frame-
work of a time-varying topology. One of the aims of the
present article is to raise attention towards the effect of
mutual selection and only the simplest random processes
have been considered here. Studying more involved ran-
dom processes is left for future work.
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[15] N. Perra, B. Gonçalves, R. Pastor-Satorras, and

A. Vespignani, Scientific reports 2 (2012).
[16] D. Garlaschelli and M. I. Loffredo, Phys. Rev. Lett. 93,

188701 (2004).
[17] M. Kretschmar and M. Morris, Mathematical biosciences

133, 165 (1996).
[18] S.-Y. Liu, A. Baronchelli, and N. Perra, Phys. Rev. E

87, 032805 (2013).

[19] G. Caldarelli, A. Capocci, P. De Los Rios, and
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