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We investigate by means of a number of different dynamical Monte Carlo simulation methods the
self-assembly of equilibrium polymers in dilute, semidilute and concentrated solutions under
good-solvent conditions. In our simulations, both linear chains and closed loops compete for the
monomers, expanding on earlier work in which loop formation was disallowed. Our findings show
that the conformational properties of the linear chains, as well as the shape of their size distribution
function, are not altered by the formation of rings. Rings only seem to deplete material from the
solution available to the linear chains. In agreement with scaling theory, the rings obey an algebraic
size distribution, whereas the linear chains conform to a Schultz–Zimm type of distribution in dilute
solution, and to an exponential distribution in semidilute and concentrated solution. A diagram
presenting different states of aggregation, including monomer-, ring-, and chain-dominated regimes,
is given. The relevance of our work in the context of experiment is discussed. ©2000 American
Institute of Physics.@S0021-9606~00!50740-5#
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I. INTRODUCTION

Solutions of highly elongated, cylindrical giant micelle
are arguably among the best studied of the so-called equ
rium polymers.1 Equilibrium polymers are formed in revers
ible polymerization processes, and are in chemical equ
rium with each other, i.e., monomeric material is continua
exchanged between the assemblies. An aspect not at all
understood is why ring closure seems to be unimportan
solutions of linear micelles, although this would remove u
favorable free ends~‘‘end caps’’! from the solution. Closed
loops have been observed in electron microscopic image
giant micelles,2 but—as has been argued elsewhere3–5—in
too low concentrations to significantly influence the prop
ties of micellar systems. In other types of equilibrium po
mer, such as liquid sulfur, the presence of rings is on
other hand thought to be all-important.6 It is believed that
rings are suppressed in those self-assembled polymeric
tems that are sufficiently rigid on the scale of the individu
monomers.3–5

A useful model describing the self-assembly of giant m
celles is what we call theRestrictedModel of equilibrium
polymers, whereby definitionring closure and branching o
chains are disallowed, and only linear chains form. In t
model, the linear self-assembly is regulated by a free ene
penalty associated with the free ends, the so-called end
~free! energyE. The end cap energy is normally presumed

a!Electronic mail: jwittmer@dpm.univ-lyon1.fr
6990021-9606/2000/113(16)/6992/14/$17.00
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be a constant independent of the chain size or aggrega
number,N, and of the overall monomer densityf.7 The
basic scaling predictions for the equilibrium polymerizati
within the Restricted Model3,8–10are based on classical poly
mer physics,11 and have been tested by two of us~J.P.W.,
A.M.! by means of various Monte Carlo approaches.12–14

Despite their inherent polydispersity, self-assembled
ear polymers resemble in many ways conventional polym
that is, polymers with a fixed molecular weight. Indeed, t
known statistical properties of conventional polymers ha
been applied quite successfully to predict the probability d
tribution function of the size of equilibrium polymers. I
agreement with theoretical predictions,3 the size distribution
function has for instance been shown to decay essent
exponentially with size in the semidilute and concentra
regimes, because then correlations generated by the excl
volume interaction are small.13 A typical aggregate size dis
tribution in a solution with strongly overlapping chains, o
tained by computer simulation, is given in Fig. 1~open
squares!.

In the present work we relax the no-loop constraint, a
discuss systems of~mainly! flexible equilibrium polymers
under good-solvent conditions, where linear chains have
compete with rings for the available monomers at given to
densityf, and end cap energyE. Branching of chains re-
mains forbidden. We discuss in detail the number density
chains and rings in different regimes~dilute vs strong over-
lap, ring vs chain dominated!, and construct the complet
‘‘phase’’ diagram of thisUnrestrictedModel. Following up
2 © 2000 American Institute of Physics
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6993J. Chem. Phys., Vol. 113, No. 16, 22 October 2000 Equilibrium polymers. II. The role of rings
an earlier, less extensive study,14 we report in this paper
results obtained with a lattice-based Monte Ca
method,13,15 and with a more recent off-lattice Monte Car
scheme.14,16 We have succeeded inmapping the results of
both methods onto each other, by making use of the nat
length and energy scales that describe the configuration
the equilibrium polymers. This has enabled us to extr
from the data the unknown prefactors that enter in the s
dard scaling theory, allowing us to construct a full diagra
of states. Qualitatively, we confirm older, less elabor
descriptions.4,5 As can be seen in Fig. 1, the number dens
of rings as a function of aggregation number~indicated by
the filled circles! is strongly singular, and dominated by
lower cut-off, that is, by the smallest ring allowed in th
simulation. Effectively, this causes the crossover between
lute and semidilute regime, and that between ring- and ch
dominated regimes to coincide, at least for large end-
energiesE.

This paper is organized as follows. We start in Sec
with a brief presentation of the computational methods
plied. Some technicalities concerning the parameters u
and the configurations sampled are considered in Sec.
The main computational results of this paper are presente
the Secs. IV, VI, and VII. In Sec. IV we discuss conform
tional properties, recall some notions and concepts of
physics of conventional polymers~of fixed size!, and deter-

FIG. 1. Probability distributions functions of self-assembled chains in
strong overlap limit~SOL!. Main figure: Comparison of the computer simu
lation results for the Restricted Model~RM! and the Unrestricted Mode
~UM!, obtained by the off-lattice Monte Carlo method~OLMC!, described
in the main text. The open squares represent the distribution of linear ch
in the RM, the filled symbols the distribution of rings~circles! and that of
linear chains~squares! within the UM. Data shown are from simulations a
a monomer density off51.5, and a scission energy ofJ57. At such a high
density, the UM system is dominated by linear chains (f1 /f'0.88), and
the distributionsc1(N) of both models are virtually identical exponentia
c1(N)}exp(2N/N1), where for convenience the notationN1[^N1& for the
mean aggregation number of linear chains is used. For our choice of de
and scission energy, (N1

RM'120, N1
UM'111). The ring distribution is well

described by the power lawc0(N)}N2(32a), with a slope 32a52.5 ~bold
line!. Inset:c0(N) in a double logarithmic plot for the OLMC, BFM, and
Potts Model algorithm~vertical axes shifted for clarity!.
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mine the sizej of the excluded volume blob.11 The following
three Secs. V, VI, and VII are dedicated to the mass dis
butions. In the short Sec. V we fix some notions, refine
problem and pose specific tasks. Subsequently, we dis
the number density of linear chains of sizeN, c1(N), in Sec.
VI. Results obtained within the Restricted Model~with rings
suppressed! and the Unrestricted Model~with rings allowed!
are compared. We attempt to map both Monte Carlo meth
onto each other, and discuss the physics at extremely
densities, where our off-lattice Monte Carlo approach exh
its features linked to packing effects, not present in
lattice-based Monte Carlo method. The number density
rings of aggregation numberN, c0(N), and its connection to
the size and mass distribution of the linear chains are
cussed in Sec. VII—the core of the paper. In Sec. VIII w
calculate the different regimes for systems of flexible eq
librium polymers in a good solvent, and compare this w
the ‘‘measured’’ distribution of monomers over the rings a
linear chains. In the final Sec. IX we summarize our findin
and speculate on the relevance of ring formation in so
recent experiments.17–19

II. ALGORITHMS

All the computational algorithms we discuss are sta
dard Monte Carlo schemes which have already been
scribed and tested in depth in recent publications.12–14 We
shall therefore be extremely brief.

The first method which was introduced to simulate t
equilibrium polymers is a grand canonical lattice algorith
based on a mapping on a Potts model.12 Because this mode
lives on a simple cubic lattice, closed loops are by geome
forced to consist of an even number of monomers. Res
obtained with this model will only be briefly mentioned~in
connection with Fig. 1!. We discuss in more detail result
obtained with two canonical Monte Carlo approaches—a
tice scheme13 based on the Bond Fluctuation Mod
~BFM!,15 and a more recent off-lattice Monte Carlo~OLMC!
approach14 generalizing an efficient bead–spring model. A
BFM and OLMC simulations have been done in three spa
dimensions, the Potts model simulations in two and th
dimensions.

The BFM used in the present investigation is atherm
besides theconstantscission energyUbond52J, which char-
acterizes the bonded interaction; an energyJ.0 is released
every time a bond forms. Apart from the no-overlap con
tions modeling hard-core excluded volume interactions,
other bonded~such as a stiffness potential! or nonbonded
interaction has been used in the present study, though
might be readily included.

In the off-lattice model, beads interact via a so-call
~shifted! FENE potential for the bonded, and a purely rep
sive Morse potential for the nonbonded interactions.16 The
bonded interaction

Ubond~r !52K~r max2r 0!2 lnF12S r 2r 0

r max2r 0
D 2G2J ~1!

depends nontrivially on the distancer between two mono-
mers. Here,J denotes again the constant part of the sciss

e

ins

ity
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ill
fre
is

y

w

ea

or

o
in
da
u
tio
o

bo
o

.
e
n
te
ly
om
sio

f
d.
tw

nc
t

n
o

a
n
t t

th
y-
e

te

ns

ity

-

-

ose
er
-

n
the
ites

e

od
me,
he
ities
x-
ate
u-

x-

nd
as-
em,
es

us
ities
r to

,

h

ean

m-
e

e

ice
ese
me
le,
each
te.

.
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energy, andK the spring constant. The former quantity w
be related with the model-independent effective end-cap
energyE, in Sec. VI. Note further that the FENE potential
harmonic near its minimum atr 0 , while exactly atr 5r 0 ,
Ubond52J. The potential diverges logarithmically to infinit
if r→r max and if r→r min52r02rmax, wherer max andr min are
the maximum and minimum extension of the spring. Follo
ing Ref. 16, we setr max51, r max2r05r02rmin50.3, andK
540. Units are chosen such thatkBT51.

Both models use local jump attempts. The time is m
sured, as usual, in Monte Carlo steps~MCS! per monomer.
Every monomer is chosen at random, and allowed to perf
a move subject to a Metropolis acceptance probability.13,14In
simulations the bonds between neighbors along the backb
of a chain are constantly subject to scission and recomb
tion events. Since chains are only transient objects the
structure of the chains can only be based on the individ
monomers, or, and this is the way we operate, on the no
of saturated and unsaturated bonds. An unsaturated b
does not connect a monomer to another one, a saturated
does. Hence, we use no direct chain information, but lists
pointers linking up the bonds.13 With a given frequency one
of the bonds~saturated or unsaturated! is chosen at random
If that bond happens to be saturated an attempt is mad
break it, if it is unsaturated, i.e., if the monomer is at the e
of a chain or a free monomer, an attempt is made to crea
bond with another monomer sufficiently close. Obvious
for reasons of detailed balance, the bond formed must c
out of the same set or range of bonds in which also scis
events are allowed to take place.13,14 We do not allow for
branching in the present study. The minimal length o
closed loop isNc53, i.e., closed dimers are not permitte
Free monomers are also not allowed to self-saturate their
unsaturated bonds.

III. PARAMETERS AND CONFIGURATIONS

The only two model parameters of operational releva
in the present study to tune the system properties are
scission energyJ and the number densityf. The starting
configurations consist in both sets of simulations of ra
domly distributed and nonbonded monomers, which we c
down step by step~a sequence of so-called ‘‘T-Jumps’’!,
each step sampling a higher scission energy up to a m
mum J515. This was done in order to produce a sufficie
chain length and concentration variation to be able to pu
the test the theoretical scaling predictions.

Due to the constant breaking and recombining of
bonds, equilibration is much faster in our equilibrium pol
meric system than is usually observed in systems of conv
tional polymers with fixed bonds. The algorithm presen
above~using the pointer lists between bonds! allows us to
simulate a large number of particles at very modest expe
of operational memory.

In our BFM simulations, we varied the number dens
over three orders of magnitude fromf50.000 125~1000
monomers per box! to f50.075 ~containing 75 000 mono
mers per box!. For densities smaller thanf50.0125 cubic
lattices with volume 2003 were used, whilst for higher den
sities a smaller box sufficed of volume 1003. Note that in the
Downloaded 27 Jul 2009 to 131.155.108.71. Redistribution subject to AIP
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BFM every monomer consists of an elementary cube, wh
eight sites on the cubic lattice are blocked for furth
occupation.15 As a result of this, the volume fraction of ma
terial is given by 8f. As was shown elsewhere,20,21 volume
fractions of around 8f'0.5 are already quite dense withi
the BFM. The reason is that at higher densities than this,
system turns glassy due to the blockage of neighboring s
by other monomers.

Most of the off-lattice Monte Carlo results involv
65 536 particles for number densities betweenf50.0325
and f52 ~and appropriately chosen box sizes!. Generally,
we have sampled with the off-lattice Monte Carlo meth
more systems in the high and extremely high density regi
while we have explored with the BFM more systems in t
dilute and semidilute regimes. Note that the highest dens
in our off-lattice Monte Carlo simulations correspond to e
traordinarily concentrated solutions. Indeed, if we estim
the corresponding volume fractions, we find that in our sim
lations these vary between 0.0072 and 0.44.~To obtain this
estimate, an effective bead volumev'p l 3/6'0.22 was
used, with a measured mean bond length ofl'0.75.! The
latter value of 0.44 has to be compared with the~only
slightly larger! hard-sphere freezing volume fraction~‘‘Alder
transition’’! of about one-half. Our simulations therefore e
tend to the ‘‘melt’’ regime of a dense liquid.

In passing we note that strictly speaking the mean bo
lengthl is not a constant, but decreases weakly with incre
ing density. However, this does not pose a serious probl
for we find that the total interaction energy per bond do
remain roughly constant, with aU total'2(J20.4) for all
monomer densitiesf and scission energiesJ probed.

Periodically, the whole system is examined and vario
moments and distributions, such as the number dens
ci(N), are counted and stored. Here, and below, we refe
ring-related quantities by using a subscripti 50, and to
chain-related ones by a subscripti 51. The number densities
ci(N) are normalized such thatf i5(NNci(N), with f i the
overall density of monomers in speciesi . Obviously, the
sum of monomers in rings,f0 , and that in linear chains
f1 , is equal to the overall monomer densityf5f01f1 .
~Free monomers are counted as linear chains of lengtN
51.! Obviously,f5f1 andf050 in the Restricted Model,
where rings are disallowed. We emphasize that the m
chain length^N&[( i ,NNci(N)/( i ,Nci(N) remains always
two orders of magnitudes smaller than the total particle nu
ber within the box. From our previous studies within th
Restricted Model,13,14 we expect finite box-size effects to b
small.

Because of the differences in the lattice and off-latt
algorithms, we cannot expect the results obtained using th
two methods to be directly comparable, even when the sa
parameters (J,f) are used. To make a comparison possib
all relevant system parameters have to be mapped onto
other. This we do by taking the dilute limit as reference sta
As the intrinsic energy scale we useE5J1Jm , with a
model-dependent shift parameterJm presented in Sec. VI
The intrinsic length scales are the mean bond lengthl , and a
length l p to be discussed in the next section.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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IV. DISTRIBUTIONS OF SIZE

Let us first discuss the conformational properties of eq
librium polymers, and show that not only they follow th
same universal laws as conventional polymers, but also
there is no essential difference in the behavior of lin
chains in the Restricted and Unrestricted Models.

The configurational behavior of the equilibrium pol
mers is most easily demonstrated by plotting their mean
as a function of the aggregation numberN, as is done in Fig.
2. Indicated are the mean end-to-end distance of the lin
chains,Re1(N), and the radii of gyration of the chains an
the rings,Rg1(N) and Rg0(N). Averages have been take
over all linear chains (i 51) or rings (i 50) of givenmassN
in the simulation box. Only results obtained with the bo
fluctuation method are shown, for two different densities a
a fixed value of the scission energyJ58. Similar results
have been obtained with the off-lattice Monte Carlo meth
Symbols are used for the distributions from the se
assembled chains in the presence of rings, lines for th
without rings. Despite the fact that the simulations point
the presence of a large number of rings within the Un
stricted Model, with the dilute systems even being ri
dominated, there is no measurable difference between
results for the linear chain sizes in the Restricted and Un
stricted Model calculations. This we quite generally find f
all densities probed, and within both simulation methods

Indicated in the figure are two dashed lines, giving t
theoretical slopes valid for very long polymers in dilute a
concentrated solution.11 In the dilute limit the chains are
swollen and their sizeR is described by the scaling relatio
R}Nn, with a self-avoiding walk exponent ofn50.588.
Surprisingly, the relatively small rings shown in Fig. 2 al
closely follow the~asymptotic! scaling behavior of their lin-
ear counterparts. In the following, the dilute limit will b
used as reference state to be able to make a compa
between the different simulation models. As natural leng
we use the mean bond lengthl and an effective bond lengt
b5be1 , the latter determined from a fit of the simulatio

FIG. 2. Mean chain sizêR(N)2&0.5 for given aggregation numberN, as
obtained from the Restricted Model~RM, lines! and Unrestricted Model
~UM, symbols! BFM simulations, at two different densities atJ58.
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data to the scaling relationRe1(N)5be1N0.588. These two
lengths in turn suggest a measure for the stiffness of
chains, which we shall call the ‘‘persistence length’’l p

5b/ l of the chains, although obviously it is a dimensionle
quantity. For the BFM we findb'3,13 and for the off-lattice
Monte Carlo methodb'0.92. In both cases this gives
persistence lengthl p5b/ l that are of similar value (l
52.733, l p'1.2 for the BFM; l 50.758, l p'1.1 for off-
lattice model!. The found values forb are essentially identi-
cal to what was obtained previously for monodisperse lin
polymers.16,21 In a similar fashion, one may define and me
sure the prefactorsbg0 andbg1 from the radii of gyrationRg0

and Rg1 . In line with our previous work on conventiona
polymers studied in Ref. 21, we findbg0 /b'0.3 and
bg1 /b'1/A6. This result holds again for both simulatio
methods.

Figure 2 shows that, as expected,11 the excluded volume
correlations in our equilibrium systems are screened out
strongly overlapping chains. More precisely, the chains
come Gaussian chains of blobs of sizej(f)5bg1gn, each
blob containingg monomers, with

g5g~f!5G~b3f!21/(3n21) ~2!

andG an as yet unknown prefactor. The value ofG may be
fixed using the classical definition for the crossover dens
of a monodisperse solution: 4p/3j3f5g. This definition
gives for the prefactorG'5.2, a value that turns out to b
numerically consistent with alternative estimates obtain
from fits to the scaling relationsRe1(N)5be1gn(N/g)1/2 or
Rg1(N)5bg1gn(N/g)1/2.

A further test of the configurational properties of th
equilibrium polymers is provided by determining the depe
dence of the first moment of the size distributions on
mean aggregation number^Ni&[(NNci(N)/(Nci(N). Our
results are presented in Fig. 3, where we have plotted
radius of gyration divided by the blob sizey5Rgi /j

FIG. 3. Scaling plot of the scaled radius of gyrationRg /j(f) versus scaled
aggregation numberNi /g(f), for rings ~filled symbols! and linear chains
~small symbols for RM, large open symbols for UM!. Ni is here the mean
aggregation number of the respective quantity presented. All data show
BFM results.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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5Rgi /(bg1g
n), vs the mean aggregation number divided

the number of monomers per blobx5^Ni&/g(f). In order to
calculate these reduced quantities, we used Eq.~2! together
with our previous estimate forG55.2. The figure shows tha
the mean chain sizes of the living polymers again follow
same universal master curve as conventional polyme11

Again we observe that the ring sizes, indicated by the
symbols, follow the same scaling law as the linear cha
which is actually rather surprising considering their re
tively small size. The fact that the two slopes that indic
the scaling behavior expected in the dilute and semidi
regimes cross nicely at (x,y)'(1,1), shows that our estimat
of G is actually rather accurate. Alternatively, we could ha
used this crossover point between the two regimes to de
the prefactorG.

In conclusion, the conformational properties of equili
rium chains are~within numerical accuracy! identical to
those of polymers of fixed length. This is in contrast to e
lier speculation in the literature, where it was surmised t
rings might strongly influence the screening of excluded v
ume close to the crossover from the dilute to the semidi
regime.3 We find that the universal functions are neither
tered by the polydispersity, nor by the presence of rings.
blob sizej is a function of total monomer densityf only.

V. MASS DISTRIBUTIONS OF EQUILIBRIUM
POLYMERS

Next we turn our attention to the probabilities of findin
aggregates of a certain aggregation number. For equilibr
polymers that are long compared to the effective bond len
b, the main departure from conventional theory of flexib
polymer solutions is that the reversibility of the se
assembly process ensures that the degrees of polymeriz
are in thermal equilibrium. This means that the distributio
c0(N) andc1(N) are not fixed, but minimize the thermody
namic potentialV@c0(N),c1(N)# of the system. It is natura
to attempt a simplified theoretical description, using a Flor
Huggins-type of mean-field approximation

V@c0~N!,c1~N!#5(
i 50

1

(
N51

`

ci~N!~ log~ci~N!l 3!

1mN1 f̃ i~N,fb3,l p ,E!!), ~3!

where we have written the thermodynamic potential as a s
over the different speciesi 50 for rings andi 51 for linear
chains, and over all possible aggregation numbersN. The
factor l 3 in the logarithm enters for dimensional reason
where we setl equal to the mean bond length of the chains
the dilute regime; all energy units are measured in units
thermal energy,kBT51. This ansatz for the thermodynam
potential is strongly motivated by its success describing
properties of equilibrium polymers within the Restricte
Model, where ring formation is suppressed.13,14 The first
term on the right-hand side is the usual translational entro
The second term represents a Lagrange multiplier or che
cal potential which fixes the total monomer densityf
5f0(m)1f1(m). All contributions to the free energy
which are extensive or linear inN are absorbed in this
Downloaded 27 Jul 2009 to 131.155.108.71. Redistribution subject to AIP
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Lagrange multiplier. The as yet not specified termsf̃ i de-
scribe the free energy contributions not extensive in the
gree of polymerization of the rings and linear chains. In ge
eral these may depend on the interactions between diffe
chains and chain parts, and as a rule differ in the dilu
semidilute and melt regimes. We stress that in the presc
tion of Eq. ~3! terms ~such as virial terms! which are not
conjugate toc0(N) or c1(N) need not be made explicit. In
spired by the results of the previous section, the central
sumption of Eq.~3! is that the two distribution functions ar
only coupled via the chemical potential that makes sure
the total amount of monomers is conserved.

In equilibrium, the distribution functions functionally
minimize the thermodynamic potential,dV/dci50, giving

l 3c0~N!5exp~2 f 0~N,b3f,l p!2mN!H~N2Nc~ l p!!,
~4!

l 3c1~N!5exp~2E~ l p!2 f 1~N,b3f!2mN!,

where we set f̃ 0115 f 0(N,b3f,l p) and f̃ 1115E( l p)
1 f 1(N,b3f) for convenience. The free energy associa
with the linear chainsf̃ 1 is split into a model- and density
invariant end-cap free energyE5J1Jm ~containing the op-
erational scission energyJ and a shift factorJm discussed
below!, and a remaining part that somehow describes
cluded volume correlations.11 The Heaviside functionH(x)
enforces a smallest possible ringNc( l p), in effect a lower
cut-off. In actual systems this cut-off may depend on fact
such as the detailed chemistry of the equilibrium polymers
hand, and on their bending stiffness not explicitly mode
here.

Before we are able to comprehensively analyze our co
puter simulation results aided by Eq.~4!, our task is~1! to
complete the mapping of the simulation methods alrea
started in the previous section;~2! to show that the Flory–
Huggins ansatz is indeed justified, and that the ring and ch
distributions decouple;~3! to identify the free energy term
f 0 and f 1 ; ~4! to show that thef i are only functions ofN
and the total densityb3f as indicated; and~5! to determine
the equilibrium values off0 /f, and^Ni& for a given system
(J,f). In the next two Secs. VI and VII we consider th
distribution functions of the linear chains and rings, and a
lyze the free energy termsf i ~tasks 3 and 4!. The mapping
~task 1! will be completed in Sec. VI B, where we relate th
natural~and in principle measurable! energy scaleE with the
operational parameterJ. We show there that the distributio
functions of linear chains in the Unrestricted Model can
computed from those in the Restricted Model, if the den
ty of monomers in chainsf1 is given~task 2!. In Sec. VI E
we study the density crossover scaling forN1(f1 ,f,E). The
relative distribution of monomers in rings and in line
chains~task 5! will be considered in Sec. VIII.

VI. MASS DISTRIBUTIONS OF LINEAR CHAINS

In this section we focus attention on the size distrib
tions of the linear equilibrium polymers, as determined
computer simulation, within both the Restricted and Un
stricted Model settings. A typical example is given in Fig.
where results are shown obtained with the off-lattice alg
rithm at high densities, that is, in the limit of strongly ove
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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lapping chains (f51.5). The distribution functions for the
Restricted and Unrestricted Models are both to high accur
pure exponentials. Under conditions where linear cha
dominate in the Unrestricted Model (f1'f), we find that
results from the Restricted and Unrestricted Models c
verge systematically. This is generally true in the limit
strongly overlapping equilibrium polymers, because then
ear chains dominate the population of equilibrium polym
~see also below!. At variance with recently published resul
of a simulation study,22 we do not observe any sign of a
algebraic singularity in the distribution function of the line
chains, even at the extremely high volume fraction off
52. Results~not shown! from the BFM simulations confirm
all trends observed with the off-lattice Monte Carlo tre
ment.

A more critical test of our statement that rings only ma
ginally influence the distribution functions of the line
chains is provided in Fig. 4, where we have plotted the d
tribution of linear chainsc1(N) against the natural scalin
variablex5N/^N1&. Apparently, in the regime of strongl
overlapping chains~main figure! the data collapse onto
c1(N)}exp(2N/^N1&) for a whole host of scission energie
J. ~Note that chain statistics deteriorate in the tail of t
distribution.! In the dilute limit we find a similar data col
lapse, but with slightly different slope, pointing at a distrib
tion of the typec1(N)}exp(2gN/^N1&), with g a constant
identified below as a critical exponent. See the inset of F
4, where results obtained from the BFM simulations cov
ing the dilute limit are shown. Identical distributions ha
been found in both limits for systems without rings.13,14

How can our observations be understood? Within
Restricted Model the free energy termf 1 in the expression
for the distribution function of linear chains in Eq.~4! can be
calculated from the scaling theory of conventional polym
in a good solvent.11 Agreement with simulation data turne

FIG. 4. Normalized distributions for linear chainsc1(x) vs the scaled ag-
gregation numberx5N/N1 , where againN1 denotes the mean aggregatio
number of the linear chains. Main figure: Data collapse on the expone
distributionc1(x)5exp(2x) ~full line! for the OLMC data within the UM,
at f51.5. Inset: Similar plot showing the BFM data in the dilute limit. A
for the RM ~Ref. 13,14!, we find c1(x)}exp(2gx) ~dashed line! with the
critical exponentg'1.16.
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out to be remarkably good.13,14We show here that this ansa
is also justified when rings are present, as long as the ove
monomer density is not extremely high~Sec. VI D!.

A. The mean-field solvent

Starting with the~hypothetical! conditions where mean
field type of behavior dictates the distribution functions,f 1

is a constant. From Eq.~4! we thus read off that within
mean-field theory, the distribution function must be a pu
exponentiall 3c1(N)5exp(2E2f12mN). It is easily shown
that for this type of distribution, the equalitym51/̂ N1&
holds, albeit exactly only in the limit of large mean aggreg
tion numberŝ N1&@1. For the mean-chain length we obta

^N1&5Al3hf1
h exp~dE! ~5!

with an amplitudeA5exp(f1/2), and mean-field exponent
h5d51/2. Note that in the UM̂ N1& is a function off1

5f1(f,E), and depends only indirectly on the control p
rameterf.

B. The dilute limit

Although largely unimportant in the semidilute and co
centrated regimes, correlation effects do matter in the di
regime, as we have in fact already seen in our discussio
the conformational properties in Sec. IV. Using the know
statistical properties of self-avoiding walks, we infer that t
free energy of a chainf 1 decreases logarithmically with th
degree of polymerizationN,11

f 152~g21!log~N!, ~6!

whereg'1.158 is the susceptibility exponent of then→0
vector model in 3 spatial dimensions.23 Equation~6! leads to
a Schultz–Zimm distribution for the linear chains,

l 3c1~N!5Ng21 exp~2E2mN!, ~7!

which indeed is born out by our simulation results, presen
in the inset of Fig. 4,24 since in the dilute limit we havem
5g/^N1& provided^N1&@1.3,13

As already advertised in the previous section, we use
simulation results obtained in the dilute limit to map th
different simulation models onto each other. The natural
ergy scaleE5J1Jm is established by fitting the data fo
c1(N) to Eq. ~7!, using the equalitym5g/^N1&. Having
done this for the Restricted and Unrestricted Model simu
tion at various values ofJ and f, we find Jm51.6 for the
BFM andJm51.7 for off-lattice model. We stress thatJm is
model dependent, absorbing the different physical beha
of the models on a microscopic scale~see Sec. II!. It can only
be coincidental that for the models we used theJm’s turn out
to be almost identical. Whatever the reason, the fixing ofJm

completes the mapping.
The concentration dependence of the mean aggrega

number in the dilute regime, for future reference denoted
Nd , is given by

Nd[^N1&5g/m5Adl 3hf1
h exp~dE! ~8!

al
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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with the exponentsh5d51/(g11), and a prefactorAd

5gGd(g11)'1.2, in terms of the exponentg and the usual
gamma functionG. Our simulations confirm these exponen
and the prefactor~results not shown!.

C. Semidilute solutions

The aggregation number dependent free energy contr
tion Eq. ~6! describes only dilute chains, i.e., chains whi
are too short to overlap. From the standard theory of conv
tional polymers,11 one expects excluded volume effects to
screened out when the chains strongly overlap. Even t
this happens only for chains larger than the blob size, tha
for aggregation numbersN@g(f), where f 1 levels off to

f 152~g21!log~g1~f!!5 f s1
g21

3n21
log~b3f!, ~9!

andg1(f)}g(f); the quantityg1 scales likeg @see Eq.~2!#,
but with the different prefactor

G15exp~2 f s /~g21!!'0.43 ~10!

fixed by a constantf s50.13, estimated below.
That f 1 indeed switches from length dependent~dilute!

to density dependent~semidilute and melt! is shown in Fig.
5, where we plot measured values off 1(N), using the mean-
field relation l 3c1(N)5exp(2E2mN) and m51/̂ N1&. Fig-
ure 5 shows thatf 1 is a constant of the degree of polyme
ization at high overlap concentrations,25 as it should. It
explains the scaling relation observed in Fig. 4, not le
because the values off 1 found for the Restricted and Unre
stricted Models turn out to be identical if the overlap
strong enough. At low densities (f<0.5), f 1 becomes de-
pendent on the chain length, due to the unscreened excl
volume interactions, but also on whether in the model r
formation is allowed or not. In the Unrestricted Model rin
formation is allowed, and as a result of that some of

FIG. 5. Density crossover of the quantity2 log(c1(N)l3)2E2N/N1, obtained
for J57 from the Restricted~open symbols! and Unrestricted Model~filled
symbols! OLMC simulations. For conditions of strong chain overlap, th
quantity becomes chain length independent and equal to the linear chain
energyf 1(f) discussed in the main text.
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available material is stored in rings. This causes a shift in
distribution of linear chains relative to that in the Restrict
Model. The trends of Fig. 4 confirm this.

Using the measured plateau values off 1 , we verify that
the density variation predicted by Eq.~9! holds, and estimate
the prefactorG1 via Eq. ~10!. This is done in Fig. 6, where
we have plotted the plateau valuesf 1 vs the dimensionless
overall concentration of monomer,b3f. Data from the BFM
~pluses! and the OLMC~asterisks! are included in the figure
Also shown aref 1 values as they may be measuredvia the
mean aggregation number in the strong overlap limit~SOL!,
that is, in semidilute and concentrated solution

NSOL[^N1&5 l 3/2f1
1/2exp~ 1

2 E1 1
2 f 1~b3f!!, ~11!

which depends explicitly on bothf and f1(f,E). We use
the directly measured̂N1& andf1 to obtain f 1(b3f). This
procedure gives identical results as thef 1 obtained straight
from the distribution functions. Again, there is no observa
difference between the results obtained with and without r
formation. In line with the prediction of Eq.~9!, we find a
logarithmic density dependence~dashed line! with a prefac-
tor (g21)/(3n21)'0.2. That in the semidilute regim
both off-lattice and BFM results coincide reinforces our b
lief that the mapping between the models is robust. The
vergence of the lattice and off-lattice data at very high d
sities is not problematic. A discussion of this issue w
postpone to Sec. VI D.

Within the semidilute regime, i.e., within the validity o
Eq. ~9!, the mean degree of polymerization of the line
chains is a power law function off and f1 , and may be
brought under the generic form of Eq.~5!,

Ns[^N1&5Asf1l 3hfh21 exp~dE! ~12!

ree
FIG. 6. Scaled aggregation number of the linear chainsN1 vs the dimen-
sionless concentrationfb3 from OLMC simulations with the scission en
ergy put atJ57. Values from both the Restricted~open circles! and Unre-
stricted Model OLMC simulations~filled circles! are included. Also shown
are the~asymptotic! values, obtained independently fromc1(N) for the larg-
estJ available for a given density for OLMC~asterisks! and BFM~pluses!.
At higher melt densitiesf>0.5, we find for the OLMC data a nonalgebra
dependence off. This can be clearly seen in the inset where we fitted
data to a functionf 1(f)5B01B1fb3, with B0'20.62 andB1'1.67.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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with d51/2, h5(11(g21)/(3n21))/2'0.6, and an am-
plitude

As5Al p
3(g21)/(3n21) exp~ f s!'1.1 ~13!

with l p'1.1. The~very weak! l p-dependence arises becau
f 1 depends onb3f rather than onl 3f. Note that in the limit
of linear chain dominance (f1 /f'1) one recovers the den
sity dependence of the Restricted Model, i.e.,^N1&}f0.6.3,13

We verified the validity of Eqs.~12! and~13! by comparison
with the computer simulation data, but do not elaborate h
on the details. In Sec. VI E we present the full crosso
scaling of^N1&, covering the entire range of concentratio
from the dilute to the melt regime.

D. Concentrated solutions

As we have discussed in a previous paper on the e
librium polymerization in the absence of ring formation14

Eq. ~12! only holds within the semidilute regime. This im
plies that there must be a large number of monomerg
within a blob, for otherwise the blob concept becomes me
ingless. Within our off-lattice Monte Carlo approach, w
have probed such high densities that the semidilute des
tion does break down—this is the melt regime already
luded to. It appears that we enter the melt regime iff
>0.5, where a different physical behavior intervenes, ess
tially due to fluidlike correlations resulting from local pac
ing constraints. Clearly, effects of this nature cannot be
pected to arise in any lattice-based bond fluctuat
technique, because of the presence of an underlying la
structure suppresses to a great extent fluidlike correlatio

Our off-lattice Monte Carlo simulations point at a line
relationship betweenf 1 and the concentration material upo
entering the melt regime;f 1(f)5B01B1fb3 with B0

'20.62 andB1'1.67, see Fig. 6, and in particular, th
inset. This also clearly shows that within the lattice mod
the semidilute regime extends deeply into the melt regim
that is, even for concentrations where the blobs are so s
as to contain no more thang'10 monomers. We attribute
this to the lack of a true fluid structure in the lattice-bas
model.

We conclude from the above that while Eq.~9! breaks
down in the melt, Eq.~11! still holds ~see Sec. VI E below!.
^N1& andf are then no longer related via a pure power la
but in addition via an exponential enhancement term,^N1&
}f1/2exp@B1fb3#. Direct measurement of^N1& in our simu-
lations confirms this once more. Indications for the deviat
from the usual power-law behavior at very high densit
have in fact also been found in earlier simulation studies.22,26

The precise reason for the emergence of the exponential
rection is at this point difficult to give. Theoretically, expo
nential corrections of the sort found here have been predi
for rigid and semiflexible micelles, but only within a secon
virial expansion valid at lower densities.27 They arise there
from excluded volume interactions between the free e
and the central parts of the chains. Clearly, although the
plicability of the concepts advanced in Ref. 27 to our hi
density system offlexible bead–spring chains is questio
able, one may surmise that differences in the packing of
Downloaded 27 Jul 2009 to 131.155.108.71. Redistribution subject to AIP
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central beads and those near the ends of the chains c
well lie at the root of problem. Further study is definite
warranted.

E. Crossover scaling of the mean length of the linear
chains

In this subsection we discuss the crossover scaling
havior for the linear chain aggregation number^N1&, focus-
ing on thed-exponent~Fig. 7! and on theh-exponent~Fig.
8!. We show that the computer simulation data from bo
Restricted and Unrestricted Models collapse onto the sa
universal function, if properly rescaled, and the directly me
sured densityf1 is used. Again we include data from bot
the bond fluctuation model~BFM! and the off-lattice Monte
Carlo ~OLMC! method. Results from the latter techniqu
have been shifted upwards for reasons of clarity in both
Figs. 7 and 8.

In Fig. 7 we compare the actual, measured^N1& with a
‘‘hypothetical’’ dilute mean chain lengthh(f1) calculated
from Eq. ~8!. In the dilute regimeh[Nd , but outside this
regime h represents an extrapolated value. Plotted is
^N1& againsth, but the quantityy5^N1&/gN against the
quantity x5(gN(f)/h(f1))1/(11g), specifically chosen to
get a scaling with thed-exponent,y}xd. Here, gN is the
mean chain length at the crossover density from the dilut
the strongly overlapping regime, defined by the equalitygN

[Nd5NSOL. Equating Eqs.~8! and ~11!, gives for this
quantity

FIG. 7. Scaling attempt for the average aggregation number of linear ch
N1 , to extract thed exponents~dashed and full line! discussed in the main
text. The measured values forN1 are compared withgN(f) ~defined in the
text!, and plotted vs (h/gN(f))1/(11g), whereh is the ~hypothetical! mean
chain length for swollen equilibrium polymers withoutinteractions between
monomers of different chains. The linear chain monomer densityf1 was
measured explicitly. Restricted and Unrestricted Model simulations ba
on both OLMC and BFM methods are shown. The OLMC data are a
trarily shifted upwards for reasons of clarity. The unshifted points all c
lapse on the same master curve! This confirms the validity of the map
between the different simulation models, and the universality of the sca
with the quantitygN(f), which we identified as the generalized number
monomers per blob containing the directly measuredf 1(f) ~see Fig. 5!.
This relation isnot altered by the presence of the rings. Hence, the f
energy of a chain end is again shown to be a function off5f01f1 only.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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gN~f!5Ad
112/(g21) exp~2 f 1~f!/~g21!!. ~14!

In the semidilute regimegN becomes proportional tog, with
an amplitudeGN5Ad

112/(g21) exp@2fs/(g21)#'5 very close
to the blob prefactorG55.2. Because of the very large e
ponent 2/(g21)'12.7, we regard these two values as n
merically identical. Our conclusion is thatgN(f) represents
a generalization of the number of monomers per blobg(f),
also valid in the limit of very high densities where Eq.~9! no
longer applies. In passing we also note thatGN is also con-
sistent withG1 @cf. Eqs.~13! and ~10!#. In other words, our
characterization of the excluded-volume blob is interna
consistent.

The purpose of all this is to make clear that in the hi
density regime discussed in the previous section, the m
aggregation number̂N1& can be described by the same un
versal function that is valid in the dilute and semidilute r
gimes, if the notion of the number of monomers per blob
generalized appropriately. The functiongN that describes the
generalized blob is universal in the sense that it depe
solely on the overall monomer densityf, and on the numbe
of monomers per effective step lengthl p . Indeed, the data
points obtained for the Restricted and Unrestricted Mod
within the bond fluctuation and off-lattice Monte Car
methods, all collapse on thesameuniversal function. The
scaling plot is compatible with the scaling relation we set
to investigatey}xd, with d50.46 in the dilute limit, andd
51/2 in the semidilute and melt limits. Although the diffe
ence between both exponents is unfortunately rather s
the expected break in the slope at the value 1 of the sca
variable is visible.

In our second scaling plot, Fig. 8, we show the effects
density variation on̂ N1&. To focus on the concentratio
behavior of the critical exponenth, we make use of Eqs.~8!
and ~12!, and plot y5^N1&/v

1/k vs x5fb3v1/w where v

FIG. 8. The scaled mean aggregation number of linear chainsN1 vs the
scaled densityf, chosen such as to get a scaling with theh exponent. As
explained in the text,N1 and f are rescaled with powers ofv
5exp(E)f1 /f. In the Restricted Model~open symbols!, and for large den-
sities in the Unrestricted Model,v reduces to the density-independent affi
ity v5exp(E). Again, the OLMC data are shifted arbitrarily upwards f
clarity.
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[exp(E)f1 /f, and k5(3n21)w'2.93 and w511(1
1g)/(3n21)'3.81 are known critical exponents. Th
should yield a scaling relationy}xh. Equating Eqs.~8! and
~12! gives a crossover densityl 3f* 5Pv21/w and a cross-
over length N* 5Qv1/k. The amplitudes P
5(Ad /As)

1/(hs2hd)'1.9 andQ5AsP
hs'1.6 are determined

from Ad and As , exactly as in the case of the Restricte
Model, where v5exp(E).13 The estimates cannot be ex
pected to be very accurate because of the large expo
1/(hs2hd)57.14, but are consistent with the estimates o
tained by using the amplitudesAd andAs predicted fromG1

~and/orG!.
The data points for the dilute and semidilute regim

clearly collapse. As discussed earlier in the context of Fig
the off-lattice Monte Carlo data do not conform to the sc
ing theory at very high densities, due to the effects of pa
ing that dominate the melt regime.

VII. MASS DISTRIBUTIONS OF CLOSED LOOPS

It has become clear from the discussion of Sec. IV, t
the dimensions of the linear equilibrium polymers are s
cessfully described in terms of the Flory exponentn. In the
preceding Sec. VI we demonstrated that another critical
ponent, the susceptibility exponentg, is the exponent rel-
evant to the description of the length distribution of the li
ear chains in the dilute and semidilute regimes. The len
distribution of rings, formed only in the Unrestricted Mode
is dominated by yet another critical exponent,a. This expo-
nent is the well-known specific heat exponent, related to
Flory exponentn via the hyperscaling relationa522Dn in
D spatial dimensions. As we shall make plausible below,
ring distribution is quite accurately described by the quas
ingular scaling relationc0(N)}N2(32a).

Let us return to the main Fig. 1. The distribution of ring
indeed follows a power law with ana50.5 in the dense limit
of the off-lattice Monte Carlo simulation. This we expec
because in the dense limitn51/2 and the simulation was
done inD53. The hyperscaling relation is checked exte
sively in the inset of the figure, where we plot the distrib
tions as obtained forD53 not only by means of the off-
lattice and bond fluctuation methods, but also from t
grand-canonical Potts model simulations, mentioned in S
II. Also included are data from the Potts model in two d
mensions, wherea51. Because the Flory exponent isn
51/2 for the concentrated or melt regime in both two a
three dimensions, our results confirm the hyperscaling r
tion.

The strong power law behavior seen in Fig. 1 does
exclude an additional exponential damping, which we exp
to be present from Eq.~4!. In the strong overlap regime thi
exponential damping is difficult to detect, because therem
51/̂ N1& is very small. However, the exponential dampin
of the ring distribution is observable in the dilute regime,
is made clear by Fig. 9. In the figure we present data fr
the off-lattice simulations, for different scission energiesJ
and at a fixed concentrationf50.125. Note thatf0 in-
creases withJ, as doeŝN1&5g/m ~see Sec. VI B!. For large
values ofJ we recover the power law behavior seen in F
1, albeit with a different exponenta5322.764 because in-
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp
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teractions are now not screened. This value is again in
with the hyperscaling relation, since in the dilute regime
Flory exponent obeysn50.588.

If the properties of rings and linear chains really d
couple as was assumed in our Flory–Huggins ansatz, we
measure the free energy difference between rings and li
chains directly by plotting the ratio

c1~N!

c0~N!
5exp~ f 0~N,f!2~E1 f 1~N,f!!! ~15!

vs the aggregation numberN. This is done in Fig. 10, where
we present off-lattice Monte Carlo data taken at a density

FIG. 9. Ring distribution~symbols! obtained from the off-lattice Monte
Carlo method for the Unrestricted Model in the dilute limit at a sing
concentrationf50.125, but for different values of the scission energyJ.
Double-logarithmic plot. The fits to the theoretical curves discussed in
text ~and indicated by drawn lines!, confirm that the ring distributionc0(N)
depends onE only indirectly via m, i.e., via N1 . The plots confirm the
hyperscaling relationa1Dn52, and fix the prefactor of the scaling theor
l0'0.1 in the dilute limit.

FIG. 10. Power-law behavior of the ratio of the length distributions for rin
and linear chains,c0 /c1 , vs the aggregation numberN ~OLMC vertically
shifted!. The slopes conform to a power law exponentt52.5 in the strong
overlap limit, and at52.92 in the dilute limit.
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f51.5, and BFM data atf50.0625 ~middle curve!, the
former shifted vertically for reasons of clarity. Both densiti
are in the strong overlap regime. The lowest curve giv
BFM data, taken at the dilute densitiesf50.0125 ~open
symbols! and f50.00125~filled symbols!. The lines indi-
cate power laws exp(f12f0)}N2t. From what we have said
above abouta, we expectt5g1Dn52.92 in the dilute
limit, and t511D/252.5 in the strong-overlap limit. The
Monte Carlo data confirm this expectation, demonstrat
once more the validity of the Flory–Huggins ansatz~task 2!.

Let us now briefly pause at a simple argument due
Porte, by which one may derive an expression for the r
distribution, and arrive at the exponenta.4 The ratio of the
ring and linear chain distribution functions, Eq.~15!, must be
equal to the ratio of the respective partition functions, wh
in turn must be proportional to the probability of opening
loop. The probability of opening a loop is proportional to~i!
the Boltzmann weight exp(2E2f1) to break a single bond;28

~ii ! the number of places where the ring can break,N; and
~iii ! the volumeRe1

3 that two neighboring segments can e
plore after being disconnected. Hence,

l 3c0~N!5l0

exp~2mN!

N~Re1~N,f,l p!l 21!3 H~N2Nc!, ~16!

with l0 an unknown constant of proportionality. We hav
put Eq.~16! to the test in Fig. 11, using the directly measur
end-to-end distanceRe1(N,f) discussed in Sec. IV, and th
measured chemical potentialm, as discussed in Sec. VI. A
wealth of data from both the lattice-based and off-latt
Monte Carlo methods in various regimes is included in
figure. The collapse of the data is next to perfect—the m
result of this paper. The nontrivial behavior ofRe1(N,f) in
the dilute and semidilute regimes explains the complex d
sity dependence of the ring distribution in the various co
centration regimes. The scaling plot yields a value ofl0

e

FIG. 11. Scaling plot of the quantityy5 l 3c0(N)exp(mN) vs x
5N(Re1(N)/ l )3), using the directly measured end-to-end distranceRe1(N)
of the linear chains for various systems for different algorithms and regim
as indicated in the figure. The data collapse onto a master curvey5l0 /x
with l0'0.1.
 license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



l

ex
ou
iv

o
s

rs

na
e

e
or

a
to

in
re
io
in
a
b

is
s

tic
as

the
ng
en-
to
uni-
rate.
of
next
-
he
ory

am-

ia-
le
g
in
s,
ty
d

-

a

u-
ce

7002 J. Chem. Phys., Vol. 113, No. 16, 22 October 2000 Wittmer et al.
'0.1 for the constant of proportionality~Fig. 9!, similar to
the one estimated by Pfeuty and co-workers6 in their analysis
of self-assembled chains.

While the scaling relation Eq.~16! appears to be wel
satisfied for relatively largeN, strong deviations from the
universal asymptotic behavior are observed for smallN. As
seen from the inspection of, e.g., Fig. 9 or Fig. 10, an un
pectedly large number of trimer rings are present in
simulations. This is emphasized in Fig. 12, where we g
the fraction of monomers trimer ringsf0(N53) relative to
the total amount, and to that in all the rings, as function
the overall concentration of aggregating material. At den
ties belowf50.25 most monomers are contained in trime
The fraction of trimer rings seems largely independent ofJ.

The effects of small chain length are systematically a
lyzed in Fig. 13, where we compare the measured free
ergy f 0(N,f) with the asymptotic behaviorf 0

aym5a2(1
1Dn)log(N), valid for largeN. Here,a is a constant func-
tion of N, although it does depend onf, because of the
density dependenceRe1 in the SOL. The density dependenc
shown in the inset, points at a decreasing tendency to f
small rings with increasing concentrationf. It appears that
the effect is much stronger in the off-lattice simulations th
in the lattice-based approach, which reaches the asymp
limit more rapidly ~results not shown!.

It is important to emphasize that the observed small-r
behavior is not in contradiction with the scaling picture p
sented in Fig. 11. It is in part caused by the similar deviat
from the asymptotic behavior of the dimensions of short l
ear chains, as can be seen in Fig. 2. We find that short ch
are smaller in dimension than expected from the scaling
havior for largeN. As the entropy gain of opening a ring
smaller the shorter the chain, short rings become as a re
of this more likely than expected@see Eq.~16!#. In other
words, the deviation from the asymptotic behavior ofc0(N)

FIG. 12. Variation of the fraction material in trimersf0(N53)/f with
overall monomer densityf, as found in the OLMC simulations. Inset: varia
tion of the fraction monomers in trimer rings, relative to that in all ringsf0 ,
vs the overall density of monomers. For all but the highest density, the m
is mainly concentrated in tiny rings. TheJ-variation is very weak.
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at smallN is caused~at least in part! by the small-N behavior
of the dimensions of the linear chains.

That there are deviations from the universal asympto
behavior in the small-ring population does not really come
a surprise. Unfortunately, even seemingly small shifts in
distribution of rings do matter when it comes to determini
the relative amounts of rings and linear chains: the ess
tially algebraic distribution forces most of the ring mass
be concentrated in the smallest rings—exactly where the
versal description based on scaling laws becomes inaccu
This is the reason why obtaining a universal diagram
states based on theoretical argument, attempted in the
section, is fraught with difficulty, at least in principle. How
ever, for the purpose of getting a qualitative picture of t
aggregated states of equilibrium polymers, scaling the
provides a sufficiently accurate basis.

VIII. DIAGRAM OF STATES

If we accept the theoretical distributions of Eq.~4! at
face value, and augment these with the values for the par
etersb, G, G1 , Ad , As , andl0 obtained by fitting to the
results of our computer simulations, we can calculate a d
gram of states or ‘‘phase diagram’’ for our system of flexib
equilibrium polymers.29 For this purpose, we calculate, usin
Eq. ~4!, the overall densities of monomers in rings and
linear chains,f0 andf1 , as well as the mean chain length
^N0& and ^N1&, as a function of the total monomer densi
f, and of the end cap energyE. For the mean end-to-en
distanceRe , and the free energy correctionf 1 to create an
additional chain end, we simply put

Re~N,b3f!5min~bNn,bgn~N/g!1/2!,
~17!

f 1~N,b3f!5max~2~g21!log~N!,2~g21!log~g1!!,

ss

FIG. 13. Small-ring effect in the UM. Data were taken from OLMC sim
lations in the strong overlap limit. Shown is the free energy differen
f 0(N,f)2 f 0

asym vs the aggregation numberN, where f 052 log(c0)2mN
and f 0

asym represents the known asymptotic value for largeN. Main figure:
Results for the densityf51.0, and various scission energiesJ. Inset: Same
as main figure, but for a fixed scission energyJ57 and various densitiesf.
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with the number of monomers per blobg(b3f)
55.2(b3f)21/(3n21) and g1(b3f)50.083g(b3f). Obvi-
ously, Eq.~17! is only an approximation to the full universa
functions.

The set of equations to be solved requires a numer
evaluation, essentially because the sums cannot all be e
ated analytically. For a givenE we vary the Lagrange mul
tiplier m, and obtain from Eq.~4! the densitiesf0 , f1 , and,
therefore, alsof. A complication is that the distribution
functions themselves depend explicitly on the densityf, at
least in the semidilute regime. The total density is of cou
not knowna priori, and has to be evaluated for any give
value of m. In principle, the only way out is a recursiv
iterative scheme. Fortunately, matters become simplified
nificantly if one starts the calculation in the dilute regime~at
largem! where bothRe and f 1 are density independent. Re
cursive iteration may then be circumvented by slowly d
creasing the value ofm, updatingf and g(f), and then
using a forward scheme to determine the nextm-value.

We first consider the relative distribution of the mon
mers over the rings and the linear chains in flexible equi
rium polymers, where we set the lower ring cut-off atNc

53, conform with our simulations. In Fig. 14 we compa
the concentration dependence of the fraction of monomer
rings, f0 /f, as obtained from our simulation studies, wi
the numerical results of the idealized model defined abo
In the inset we furthermore give the concentration dep
dence of the mean chain lengths^N&, ^N1& and ^N0&. Con-
sidering that no additional fit parameters were used,
agreement, although not perfect, is actually quite reasona
The general trend is well described by the model calculat

FIG. 14. Comparison of the concentration dependence of the fractio
rings as obtained by Monte Carlo simulations, and that calculated from
theory, described in the main text. The curves~for l050.1, Jm51.6, and
l p51.1! contain no additional fit parameters! Main figure: Ratiof0 /f of
monomers contained in rings. Data from BFM~open symbols! and OLMC
simulations ~filled symbols! are indicated. Inset:̂N&, N0 and N1 for J
510. Obviously, ^N&'N0 for f0 /f'1, and for largef we haveN1

}f2h with h50.6 ~dotted line!. Note that the growth of̂N& is intricate,
and could in intermediate regimes lead to a power law with exponenh
.0.6, in agreement with some~but not all! experimental findings~Ref. 17!.
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The full diagram of states is presented in Fig. 15. W
distinguish three regimes in the (E,f)-plane:~i! one where
free monomers dominate at low densities and end-cap e
gies;~ii ! one where rings dominate, at intermediate densi
and high end-cap energies; and~iii ! one where linear chains
dominate, at high densities. The crossover to the ri
dominated regime is defined by the equalityf05f15f/2.
For energies larger thanE56.7, we findtwo roots: the con-
centrationf rl denoting the crossover between ring and line
chain dominance, and the concentrationfmr separating the
monomer- and ring-dominated regimes. The crossover c
centrationfml is defined as that concentration when half t
linear chains is in monomeric form, and half in polymer
form of N.1. For comparison we have also indicated in F
15 data found by means of computer simulation within t
BFM. Configurations with ring dominance are denoted
circles, systems where linear chains dominate by squa
Apparently, the simulation data corroborate our theoreti
phase diagram.

In Fig. 15 we have in addition drawn the three dilute
semidilute crossover densitiesf* (E) of relevance to our
discussion. The thin dashed line denotes the crossover
sity l 3f* (E).2 exp(2E/3.8), valid within the Restricted
Model ~where rings are absent!. The presence of rings alter
qualitatively the crossover density, for in the Unrestrict
Model it becomes independent ofE at large end-cap ener
gies. This bounds the semidilute regime to relatively hi
densities in the Unrestricted Model, as was in fact alrea
remarked by Cates,3, see Fig. 15. The semidilute regime ca
not extend itself deeply into the ring regime, basically b
cause the rings are too short. This is shown by the dash
dotted line, which indicates the crossover density for
linear chains, as defined by equatingg(f1* ) with ^N1&. ~This
definition of f1* corresponds to the one given in Sec. V!
Note thatl 3f1* →0.055, and that the chains start to overl

of
e
FIG. 15. A diagram of states for the Unrestricted Model, withl050.1 and
l p51.1. Indicated are three regimes where monomers, rings, and li
chains dominate the population of aggregates, as explained in the text
ring regime does not extend to within the semidilute regime above
^N&5g(f)-line. Also shown are the values ofE and l 3f from BFM simu-
lations denoting the regions off0 /f.1 ~spheres!, or f1 /f,1 ~squares!.
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slightly below thef rl -line. The rings shorter thang remain
swollen at densities well abovef rl . This can be seen from
the thick dashed line, the crossover density calculated
equatingg(f5f* ) with the mean chain lengtĥN& of all
chains ~chains and rings!. This crossover density has a
asymptotic valuel 3f* →0.29 in the limit of large end-cap
energies. Around the crossover from the ring- to the lin
chain-dominated regime, the mean chain length grows
idly from ^N&'N0'Nc to ^N&'^N1&[N1 , because then
most ~but not all! of the additional monomers are now in
cluded in the long chains.

IX. DISCUSSION AND CONCLUSIONS

Based on extensive computer simulations in two a
three dimensions, using a number of different simulatio
techniques, we conclude that the configurational proper
of the self-assembled linear chains are not altered if r
closure is allowed. The same can be said about the shap
the probability distribution of the linear chains. We find th
the probability of finding linear chains of a certain leng
drops off exponentially with length, at least for concent
tions where the chains strongly overlap. In dilute solutio
where the chains do not overlap, the distribution function
of the Schultz–Zimm form. Previously, the same distributi
functions were found theoretically, as well as by means
computer simulations, in equilibrium polymer systems wh
ring closure was suppressed. If ring closure is allowed,
find the resulting distribution of rings to be essentially alg
braic, albeit that in dilute solution the algebraic distributi
is dampened by an additional exponential length dep
dence.

It seems that the rings formed in equilibrium polyme
ization merely consume monomers from solution, mak
fewer of them available for absorption into linear chain
This is experimentally relevant, because it shifts the cro
over to the semidilute regime to significantly higher den
ties. Interestingly, of the amount of material present in
rings, a very large fraction resides in the smallest rin
allowed—in fact much more than expected from the univ
sal scaling relations which seem to be valid for large eno
rings. In our case the smallest rings possible are determ
by an arbitrary cut-off. In reality, the smallest possible ring
likely to be determined by the chemistry of the system
hand, making the cut-off a nonuniversal quantity. An imp
tant factor determining the minimum size of a ring may w
be the rigidity of the bonds connecting the basic buildi
blocks of the equilibrium polymers, and possibly also t
configurational properties of the building blocks themselv

It has been argued in the literature that rings shorter t
roughly a persistence length are highly unlikely to form.4,5 If
it takes many monomers to make one persistence length,
closure is suppressed in favor of linear chains. This migh
the reason why rings seem to be unimportant in giant mi
lar systems, because each individual surfactant mole
does not contribute a great deal to the length of an aggreg
For giant micelles the number of monomers required to gr
an aggregate the size of a persistence length may be
large indeed, even when the aggregate is quite flexible.
same need not be true in other types of equilibrium polym
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system, and for some ring formation must be relevant.
deed, it is well known that in liquid sulfur rings play a
important role. We speculate that the short S8 rings, which
seem to overwhelmingly dominate the ring regime of liqu
sulfur, represent the aforementioned lower cut-off.

The question arises as to why the problem of ring c
sure has not provoked more interest, for instance, in rela
to other types of equilibrium polymeric solutions. A plau
sible reason is that it appears to be difficult to experimenta
distinguish between rings and linear chains, although n
experimental techniques may change this in the futu
Meijer and co-workers have recently been able to distingu
by means of NMR methods between material in tight rin
and that in other chains in their system of hydrogen-bon
equilibrium polymers.18 Unfortunately, these authors hav
not yet undertaken any systematic studies of ring formati
for the moment barring a comparison with our compu
simulation results.

Direct measurements of entire size distributions are a
extremely rare in the field of equilibrium polymeric system
Greer and co-workers quite recently presented size distr
tions of the living polymerization of poly~a-methyl styrene!
in the solvent tetrahydrofuran.19 The distributions were ob-
tained by means of size exclusion chromatography after
mination of the polymerization. The data very clearly show
distribution that is algebraic for small degrees of polymeriz
tion, crossing over to an exponential distribution for lar
degrees of polymerization, pointing at the presence of sm
rings. ~The experiments cannot distinguish been rings a
linear chains, so the distribution contains the sum of con
butions from linear chains and rings, if present.! A mean-
field power-law distribution proportional toN22.5 turns out
to fit the data quite well at low degrees of polymerization a
suggests that ring formation might indeed play an import
role in this equilibrium polymer system.30
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