123 research outputs found

    Miltefosine in the Treatment of Cutaneous Leishmaniasis Caused by Leishmania braziliensis in Brazil: A Randomized and Controlled Trial

    Get PDF
    Cutaneous leishmaniasis (CL) is characterized by skin ulcerations and occurs in rural poor areas of developing countries. It is treated with daily injections of antimony for 20 days, which is associated with irregular use and increasingly lower cure rates. Miltefosine is an oral medication with activity against the agent of CL (Leishmania). We have studied the efficacy and safety of miltefosine compared with antimony in patients with CL caused by Leishmania braziliensis in Bahia, Brazil. A total of 90 patients participated; 60 received miltefosine and 30 were treated with antimony. Six months after treatment, 75% of patients treated with miltefosine were cured, compared with 53% of the patients in the antimony group, a difference considered significant (p = 0.04). We also found that miltefosine was more effective than antimony in adults than in children. The incidence of side effects was similar with both drugs (76.7% vs. 78.3%), but all patients were able to finish the treatments. Our study shows that miltefosine is more effective than antimony for the treatment of CL in Bahia, Brazil and can contribute to the control of this disease due to its activity and easier administration

    Immunity to Lutzomyia intermedia Saliva Modulates the Inflammatory Environment Induced by Leishmania braziliensis

    Get PDF
    Transmission of Leishmania parasites occurs during blood feeding, when infected female sand flies inject humans with parasites and saliva. Chemokines and cytokines are secreted proteins that regulate the initial immune responses and have the potential of attracting and activating cells. Herein, we studied the expression of such molecules and the cellular recruitment induced by salivary proteins of the Lutzomyia intermedia sand fly. Of note, Lutzomyia intermedia is the main vector of Leishmania braziliensis, a parasite species that causes cutaneous leishmaniasis, a disease associated with the development of destructive skin lesions that can be fatal if left untreated. We observed that L. intermedia salivary proteins induce a potent cellular recruitment and modify the expression profile of chemokines and cytokines in mice. More importantly, in mice previously immunized with L. intermedia saliva, the alteration in the initial inflammatory response was even more pronounced, in terms of the number of cells recruited and in terms of gene expression pattern. These findings indicate that an existing immunity to L. intermedia sand fly induces an important modulation in the initial immune response that may, in turn, promote parasite multiplication, leading to the development of cutaneous leishmaniasis

    Toll-Like Receptor 3 Signaling on Macrophages Is Required for Survival Following Coxsackievirus B4 Infection

    Get PDF
    Toll-like receptor 3 (TLR3) has been proposed to play a central role in the early recognition of viruses by sensing double stranded RNA, a common intermediate of viral replication. However, several reports have demonstrated that TLR3 signaling is either dispensable or even harmful following infection with certain viruses. Here, we asked whether TLR3 plays a role in the response to coxsackievirus B4 (CB4), a prevalent human pathogen that has been associated with pancreatitis, myocarditis and diabetes. We demonstrate that TLR3 signaling on macrophages is critical to establish protective immunity to CB4. TLR3 deficient mice produced reduced pro-inflammatory mediators and are unable to control viral replication at the early stages of infection resulting in severe cardiac damage. Intriguingly, the absence of TLR3 did not affect the activation of several key innate and adaptive cellular effectors. This suggests that in the absence of TLR3 signaling on macrophages, viral replication outpaces the developing adaptive immune response. We further demonstrate that the MyD88-dependent signaling pathways are not only unable to compensate for the loss of TLR3, they are also dispensable in the response to this RNA virus. Our results demonstrate that TLR3 is not simply part of a redundant system of viral recognition, but rather TLR3 plays an essential role in recognizing the molecular signatures associated with specific viruses including CB4

    Downregulation of the Hsp90 System Causes Defects in Muscle Cells of Caenorhabditis Elegans

    Get PDF
    The ATP-dependent molecular chaperone Hsp90 is required for the activation of a variety of client proteins involved in various cellular processes. Despite the abundance of known client proteins, functions of Hsp90 in the organismal context are not fully explored. In Caenorhabditis elegans, Hsp90 (DAF-21) has been implicated in the regulation of the stress-resistant dauer state, in chemosensing and in gonad formation. In a C. elegans strain carrying a DAF-21 mutation with a lower ATP turnover, we observed motility defects. Similarly, a reduction of DAF-21 levels in wild type nematodes leads to reduced motility and induction of the muscular stress response. Furthermore, aggregates of the myosin MYO-3 are visible in muscle cells, if DAF-21 is depleted, implying a role of Hsp90 in the maintenance of muscle cell functionality. Similar defects can also be observed upon knockdown of the Hsp90-cochaperone UNC-45. In life nematodes YFP-DAF-21 localizes to the I-band and the M-line of the muscular ultrastructure, but the protein is not stably attached there. The Hsp90-cofactor UNC-45-CFP contrarily can be found in all bands of the nematode muscle ultrastructure and stably associates with the UNC-54 containing A-band. Thus, despite the physical interaction between DAF-21 and UNC-45, apparently the two proteins are not always localized to the same muscular structures. While UNC-45 can stably bind to myofilaments in the muscular ultrastructure, Hsp90 (DAF-21) appears to participate in the maintenance of muscle structures as a transiently associated diffusible factor

    Cooperation between Apoptotic and Viable Metacyclics Enhances the Pathogenesis of Leishmaniasis

    Get PDF
    Mimicking mammalian apoptotic cells by exposing phosphatidylserine (PS) is a strategy used by virus and parasitic protozoa to escape host protective inflammatory responses. With Leishmania amazonensis (La), apoptotic mimicry is a prerogative of the intramacrophagic amastigote form of the parasite and is modulated by the host. Now we show that differently from what happens with amastigotes, promastigotes exposing PS are non-viable, non-infective cells, undergoing apoptotic death. As part of the normal metacyclogenic process occurring in axenic cultures and in the gut of sand fly vectors, a sub-population of metacyclic promastigotes exposes PS. Apoptotic death of the purified PS-positive (PSPOS) sub-population was confirmed by TUNEL staining and DNA laddering. Transmission electron microscopy revealed morphological alterations in PSPOS metacyclics such as DNA condensation, cytoplasm degradation and mitochondrion and kinetoplast destruction, both in in vitro cultures and in sand fly guts. TUNELPOS promastigotes were detected only in the anterior midgut to foregut boundary of infected sand flies. Interestingly, caspase inhibitors modulated parasite death and PS exposure, when added to parasite cultures in a specific time window. Efficient in vitro macrophage infections and in vivo lesions only occur when PSPOS and PS-negative (PSNEG) parasites were simultaneously added to the cell culture or inoculated in the mammalian host. The viable PSNEG promastigote was the infective form, as shown by following the fate of fluorescently labeled parasites, while the PSPOS apoptotic sub-population inhibited host macrophage inflammatory response. PS exposure and macrophage inhibition by a subpopulation of promastigotes is a different mechanism than the one previously described with amastigotes, where the entire population exposes PS. Both mechanisms co-exist and play a role in the transmission and development of the disease in case of infection by La. Since both processes confer selective advantages to the infective microorganism they justify the occurrence of apoptotic features in a unicellular pathogen

    Immunogenic Salivary Proteins of Triatoma infestans: Development of a Recombinant Antigen for the Detection of Low-Level Infestation of Triatomines

    Get PDF
    Chagas disease, caused by Trypanosoma cruzi, is a neglected disease with 20 million people at risk in Latin America. The main control strategies are based on insecticide spraying to eliminate the domestic vectors, the most effective of which is Triatoma infestans. This approach has been very successful in some areas. However, there is a constant risk of recrudescence in once-endemic regions resulting from the re-establishment of T. infestans and the invasion of other triatomine species. To detect low-level infestations of triatomines after insecticide spraying, we have developed a new epidemiological tool based on host responses against salivary antigens of T. infestans. We identified and synthesized a highly immunogenic salivary protein. This protein was used successfully to detect differences in the infestation level of T. infestans of households in Bolivia and the exposure to other triatomine species. The development of such an exposure marker to detect low-level infestation may also be a useful tool for other disease vectors

    Spatial distribution and risk factors of Brucellosis in Iberian wild ungulates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of wildlife as a brucellosis reservoir for humans and domestic livestock remains to be properly established. The aim of this work was to determine the aetiology, apparent prevalence, spatial distribution and risk factors for brucellosis transmission in several Iberian wild ungulates.</p> <p>Methods</p> <p>A multi-species indirect immunosorbent assay (iELISA) using <it>Brucella </it>S-LPS antigen was developed. In several regions having brucellosis in livestock, individual serum samples were taken between 1999 and 2009 from 2,579 wild bovids, 6,448 wild cervids and4,454 Eurasian wild boar (<it>Sus scrofa</it>), and tested to assess brucellosis apparent prevalence. Strains isolated from wild boar were characterized to identify the presence of markers shared with the strains isolated from domestic pigs.</p> <p>Results</p> <p>Mean apparent prevalence below 0.5% was identified in chamois (<it>Rupicapra pyrenaica</it>), Iberian wild goat (<it>Capra pyrenaica</it>), and red deer (<it>Cervus elaphus</it>). Roe deer (<it>Capreolus capreolus</it>), fallow deer (<it>Dama dama</it>), mouflon (<it>Ovis aries</it>) and Barbary sheep (<it>Ammotragus lervia</it>) tested were seronegative. Only one red deer and one Iberian wild goat resulted positive in culture, isolating <it>B. abortus </it>biovar 1 and <it>B. melitensis </it>biovar 1, respectively. Apparent prevalence in wild boar ranged from 25% to 46% in the different regions studied, with the highest figures detected in South-Central Spain. The probability of wild boar being positive in the iELISA was also affected by age, age-by-sex interaction, sampling month, and the density of outdoor domestic pigs. A total of 104 bacterial isolates were obtained from wild boar, being all identified as <it>B. suis </it>biovar 2. DNA polymorphisms were similar to those found in domestic pigs.</p> <p>Conclusions</p> <p>In conclusion, brucellosis in wild boar is widespread in the Iberian Peninsula, thus representing an important threat for domestic pigs. By contrast, wild ruminants were not identified as a significant brucellosis reservoir for livestock.</p

    Regulation of immunity during visceral Leishmania infection

    Get PDF
    Unicellular eukaryotes of the genus Leishmania are collectively responsible for a heterogeneous group of diseases known as leishmaniasis. The visceral form of leishmaniasis, caused by L. donovani or L. infantum, is a devastating condition, claiming 20,000 to 40,000 lives annually, with particular incidence in some of the poorest regions of the world. Immunity to Leishmania depends on the development of protective type I immune responses capable of activating infected phagocytes to kill intracellular amastigotes. However, despite the induction of protective responses, disease progresses due to a multitude of factors that impede an optimal response. These include the action of suppressive cytokines, exhaustion of specific T cells, loss of lymphoid tissue architecture and a defective humoral response. We will review how these responses are orchestrated during the course of infection, including both early and chronic stages, focusing on the spleen and the liver, which are the main target organs of visceral Leishmania in the host. A comprehensive understanding of the immune events that occur during visceral Leishmania infection is crucial for the implementation of immunotherapeutic approaches that complement the current anti-Leishmania chemotherapy and the development of effective vaccines to prevent disease.The research leading to these results has received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED). VR is supported by a post-doctoral fellowship granted by the KINDReD consortium. RS thanks the Foundation for Science and Technology (FCT) for an Investigator Grant (IF/00021/2014). This work was supported by grants to JE from ANR (LEISH-APO, France), Partenariat Hubert Curien (PHC) (program Volubilis, MA/11/262). JE acknowledges the support of the Canada Research Chair Program

    A statistical framework for cross-tissue transcriptome-wide association analysis

    Get PDF
    Transcriptome-wide association analysis is a powerful approach to studying the genetic architecture of complex traits. A key component of this approach is to build a model to impute gene expression levels from genotypes by using samples with matched genotypes and gene expression data in a given tissue. However, it is challenging to develop robust and accurate imputation models with a limited sample size for any single tissue. Here, we first introduce a multi-task learning method to jointly impute gene expression in 44 human tissues. Compared with single-tissue methods, our approach achieved an average of 39% improvement in imputation accuracy and generated effective imputation models for an average of 120% more genes. We describe a summary-statistic-based testing framework that combines multiple single-tissue associations into a powerful metric to quantify the overall gene–trait association. We applied our method, called UTMOST (unified test for molecular signatures), to multiple genome-wide-association results and demonstrate its advantages over single-tissue strategies
    corecore