275 research outputs found
Handmade clay bricks: chemical, physical and mechanical properties
The clay brick masonry that is much used in historical structures often is in a rather poor state of conservation. In order to intervene correctly in these buildings, it is convenient to characterize the old material. For this purpose, a large sample of clay brick specimens from the 12th to 19th century were collected from six Portuguese monasteries, and were characterized chemically, physically and mechanically. A large variability of the properties was found. Additionally, a sample of handmade new bricks, which are commonly used as replacing material, was also analysed. The results were compared to the old bricks and could be possibly adequate as substitution bricks. Still, significant differences were found in chemical composition, and in water absorption and porosity, which are much lower in modern handmade bricks. With respect to mechanical properties, the range of values found in old bricks was rather high and the degree of deterioration exhibited a large scatter, meaning that a conclusion is hardly possible.The authors gratefully acknowledge the Instituto de Gestao do Patrimonio Arquitectonico e Arqueologico (IGESPAR) for providing the old clay bricks used in the present work. The first author acknowledges the partial funding of this work by the FCT through the following scholarships POCTI SFRH/BD/6409/2001 and POCTI SFRH/BPD/26706/2005
On a Fast Solution Strategy for a Surface-Wire Integral Formulation of the Anisotropic Forward Problem in Electroencephalography
This work focuses on a quasi-linear-in-complexity strategy for a hybrid surface-wire integral equation solver for the electroencephalography forward problem. The scheme exploits a block diagonally dominant structure of the wire self block— that models the neuronal fibers self interactions—and of the surface self block—modeling interface potentials. This structure leads to two Neumann iteration schemes further accelerated with adaptive integral methods. The resulting algorithm is linear up to logarithmic factors. Numerical results confirm the performance of the method in biomedically relevant scenarios
Polarization modulation instability in a Manakov fiber system
The Manakov model is the simplest multicomponent model of nonlinear wave theory: It describes elementary
stable soliton propagation and multisoliton solutions, and it applies to nonlinear optics, hydrodynamics, and
Bose-Einstein condensates. It is also of fundamental interest as an asymptotic model in the context of the
widely used wavelength-division-multiplexed optical fiber transmission systems. However, although its physical
relevance was confirmed by the experimental observation of Manakov (vector) solitons in a planar waveguide in
1996, there have in fact been no quantitative experiments confirming its validity for nonlinear dynamics other than
soliton formation. Here, we report experiments in optical fiber that provide evidence of passband and baseband
polarization modulation instabilities in a defocusing Manakov system. In the spontaneous regime, we also reveal
a unique saturation effect as the pump power increases. We anticipate that such observations may impact the
application of this minimal model to describe and understand more complicated phenomena in nature, such as
the formation of extreme waves in multicomponent systems
Bronchodilating effects of extrafine beclometasone dipropionate and formoterol fumarate via pressurized metered dose inhaler in asthmatic children
Introduction: in asthmatic children older than 5 years, the GINA guidelines
2012 update recommend to add inhaled long-acting b2- agonists (LABA)
when the disease is not adequately controlled with inhaled corticosteroids
(ICS) alone. Controlled studies have shown that fixed combination
therapies are as effective as giving each drug separately and may increase
patients’ compliance. A paediatric extrafine fixed combination of
beclometasone dipropionate (BDP) and formoterol fumarate (FF) via
pressurized metered dose inhaler (pMDI) containing 50mg of BDP and 6mg
of FF per actuation (CHF1535) was developed by Chiesi Farmaceutici
S.p.A. (Parma, Italy)
Brown adipose tissue: is it affected by intermittent hypoxia?
<p>Abstract</p> <p>Background</p> <p>Intermittent hypoxia (IH), a model of sleep apnea, produces weight loss in animals. We hypothesized that changes in brown adipose tissue (BAT) function are involved in such phenomenon. We investigated the effect of IH, during 35 days, on body weight, brown adipose tissue wet weight (BATww) and total protein concentration (TPC) of BAT.</p> <p>Methods</p> <p>We exposed Balb/c mice to 35 days of IH (n = 12) or sham intermittent hypoxia (SIH; n = 12), alternating 30 seconds of progressive hypoxia to a nadir of 6%, followed by 30 seconds of normoxia. During 8 hours, the rodents underwent a total of 480 cycles of hypoxia/reoxygenation, equivalent to an apnea index of 60/hour. BAT was dissected and weighed while wet. Protein was measured using the Lowry protein assay.</p> <p>Results</p> <p>Body weight was significantly reduced in animals exposed to IH, at day 35, from 24.4 ± 3.3 to 20.2 ± 2.2 g (p = 0.0004), while in the SIH group it increased from 23.3 ± 3.81 to 24.1 ± 2.96 g (p = 0.23). BATww was also lower in IH than in SIH group (p = 0.00003). TPC of BAT, however, was similar in IH (204.4 ± 44.3 μg/100 μL) and SIH groups (213.2 ± 78.7 μg/100 μL; p = 0.74) and correlated neither with body weight nor with BATww. TPC appeared to be unaffected by exposure to IH also in multivariate analysis, adjusting for body weight and BATww. The correlation between body weight and BATww is significant (rho= 0.63) for the whole sample. When IH and SIH groups are tested separately, the correlations are no longer significant (rho= 0.48 and 0.05, respectively).</p> <p>Conclusion</p> <p>IH during 35 days in a mice model of sleep apnea causes weight loss, BATww reduction, and no change in TPC of BATww. The mechanisms of weight loss under IH demands further investigation.</p
Peregrine Solitons beyond the Threefold Limit and Their Two-Soliton Interactions
6 pags., 5 figs.Within the coupled Fokas-Lenells equations framework, we show explicitly that, in contrast to the expected threefold-amplitude magnification, Peregrine solitons can reach a peak amplitude as high as 5 times the background level. Besides, the interaction of two such anomalous Peregrine solitons can generate a spikelike rogue wave of extremely high peak amplitude, depending on the parameters used. We numerically confirm that the Peregrine soliton beyond the threefold limit can be reproduced from either a deterministic initial profile or a chaotic background field, hence anticipating the feasibility of its experimental observation.This work was supported by the National Natural Science
Foundation of China (Grant No. 11474051) and by the
European Union under the European Unions Horizon 2020
research and innovation program MSCA-RISE-2015 (Grant
No. 691051). Ph. G. was supported by the Indo-French
Centre for the Promotion of Advanced Research (IFCPAR/
CEFIPRA) under Contract No. 5104-2. The work of J. M.
S.-C. was supported by MINECO under Contract
No. TEC2015-71127-C2-1-R and by the Comunidad
Autonoma de Madrid (CAM) under Contract No. S2013/
MIT-2790Peer Reviewe
CVID-Associated B Cell Activating Factor Receptor Variants Change Receptor Oligomerization, Ligand Binding, and Signaling Responses.
Binding of the B cell activating factor (BAFF) to its receptor (BAFFR) activates in mature B cells many essential pro-survival functions. Null mutations in the BAFFR gene result in complete BAFFR deficiency and cause a block in B cell development at the transition from immature to mature B cells leading therefore to B lymphopenia and hypogammaglobulinemia. In addition to complete BAFFR deficiency, single nucleotide variants encoding BAFFR missense mutations were found in patients suffering from common variable immunodeficiency (CVID), autoimmunity, or B cell lymphomas. As it remained unclear to which extent such variants disturb the activity of BAFFR, we performed genetic association studies and developed a cellular system that allows the unbiased analysis of BAFFR variants regarding oligomerization, signaling, and ectodomain shedding.
In addition to genetic association studies, the BAFFR variants P21R, A52T, G64V, DUP92-95, P146S, and H159Y were expressed by lentiviral gene transfer in DG-75 Burkitt's lymphoma cells and analyzed for their impacts on BAFFR function.
Binding of BAFF to BAFFR was affected by P21R and A52T. Spontaneous oligomerization of BAFFR was disturbed by P21R, A52T, G64V, and P146S. BAFF-dependent activation of NF-κB2 was reduced by P21R and P146S, while interactions between BAFFR and the B cell antigen receptor component CD79B and AKT phosphorylation were impaired by P21R, A52T, G64V, and DUP92-95. P21R, G64V, and DUP92-95 interfered with phosphorylation of ERK1/2, while BAFF-induced shedding of the BAFFR ectodomain was only impaired by P21R.
Although all variants change BAFFR function and have the potential to contribute as modifiers to the development of primary antibody deficiencies, autoimmunity, and lymphoma, P21R is the only variant that was found to correlate positively with CVID
- …