1,074 research outputs found

    The cos 2 phi asymmetry of Drell-Yan and J/psi production in unpolarized ppbar scattering

    Full text link
    We investigate the cos 2 phi azimuthal asymmetry in Drell--Yan and J/psi production from unpolarized ppbar scattering at GSI-HESR energies. The contribution to this asymmetry arising from the leading-twist Boer-Mulders function h_1^perp(x, k_T^2), which describes a correlation between the transverse momentum and the transverse spin of quarks in an unpolarized hadron, is explicitly evaluated, and predictions for the GSI-HESR kinematic regime are presented. We show that the cos 2 phi asymmetry is quite sizable both on the J/psi peak and in the Drell-Yan continuum region. Therefore these processes may offer an experimentally viable access to the Boer-Mulders function in the early unpolarized stage of GSI experiments.Comment: 5 pages, 3 figures, to be published in Eur. Phys.

    Self-generated magnetic flux in YBa2_2Cu3_3O7x_{7-x} grain boundaries

    Full text link
    Grain boundaries in YBa2_2Cu3_3O7x_{7-x} superconducting films are considered as Josephson junctions with a critical current density jc(x)j_c(x) alternating along the junction. A self-generated magnetic flux is treated both analytically and numerically for an almost periodic distribution of jc(x)j_c(x). We obtained a magnetic flux-pattern similar to the one which was recently observed experimentally.Comment: 7 pages, 3 figure

    Phase-Locking of Vortex Lattices Interacting with Periodic Pinning

    Full text link
    We examine Shapiro steps for vortex lattices interacting with periodic pinning arrays driven by AC and DC currents. The vortex flow occurs by the motion of the interstitial vortices through the periodic potential generated by the vortices that remain pinned at the pinning sites. Shapiro steps are observed for fields B_{\phi} < B < 2.25B_{\phi} with the most pronouced steps occuring for fields where the interstitial vortex lattice has a high degree of symmetry. The widths of the phase-locked current steps as a function of the magnitude of the AC driving are found to follow a Bessel function in agreement with theory.Comment: 5 pages 5 postscript figure

    Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy

    Get PDF
    The deubiquitylase USP30 is an actionable target considered for treatment of conditions associated with defects in the PINK1-PRKN pathway leading to mitophagy. We provide a detailed cell biological characterization of a benzosulphonamide molecule, compound 39, that has previously been reported to inhibit USP30 in an in vitro enzymatic assay. The current compound offers increased selectivity over previously described inhibitors. It enhances mitophagy and generates a signature response for USP30 inhibition after mitochondrial depolarization. This includes enhancement of TOMM20 and SYNJ2BP ubiquitylation and phosphoubiquitin accumulation, alongside increased mitophagy. In dopaminergic neurons, generated from Parkinson disease patients carrying loss of function PRKN mutations, compound 39 could significantly restore mitophagy to a level approaching control values. USP30 is located on both mitochondria and peroxisomes and has also been linked to the PINK1-independent pexophagy pathway. Using a fluorescence reporter of pexophagy expressed in U2OS cells, we observe increased pexophagy upon application of compound 39 that recapitulates the previously described effect for USP30 depletion. This provides the first pharmacological intervention with a synthetic molecule to enhance peroxisome turnover

    Macroscopic Quantum Fluctuations in the Josephson Dynamics of Two Weakly Linked Bose-Einstein Condensates

    Full text link
    We study the quantum corrections to the Gross-Pitaevskii equation for two weakly linked Bose-Einstein condensates. The goals are: 1) to investigate dynamical regimes at the borderline between the classical and quantum behaviour of the bosonic field; 2) to search for new macroscopic quantum coherence phenomena not observable with other superfluid/superconducting systems. Quantum fluctuations renormalize the classical Josephson oscillation frequencies. Large amplitude phase oscillations are modulated, exhibiting collapses and revivals. We describe a new inter-well oscillation mode, with a vanishing (ensemble averaged) mean value of the observables, but with oscillating mean square fluctuations. Increasing the number of condensate atoms, we recover the classical Gross-Pitaevskii (Josephson) dynamics, without invoking the symmetry-breaking of the Gauge invariance.Comment: Submitte

    A Real Space Description of Magnetic Field Induced Melting in the Charge Ordered Manganites: I. The Clean Limit

    Full text link
    We study the melting of charge order in the half doped manganites using a model that incorporates double exchange, antiferromagnetic superexchange, and Jahn-Teller coupling between electrons and phonons. We primarily use a real space Monte Carlo technique to study the phase diagram in terms of applied field (h)(h) and temperature (T)(T), exploring the melting of charge order with increasing hh and its recovery on decreasing hh. We observe hysteresis in this response, and discover that the `field melted' high conductance state can be spatially inhomogeneous even without extrinsic disorder. The hysteretic response plays out in the background of field driven equilibrium phase separation. Our results, exploring hh, TT, and the electronic parameter space, are backed up by analysis of simpler limiting cases and a Landau framework for the field response. This paper focuses on our results in the `clean' systems, a companion paper studies the effect of cation disorder on the melting phenomena.Comment: 16 pages, pdflatex, 11 png fig

    USP30 sets a trigger threshold for PINK1–PARKIN amplification of mitochondrial ubiquitylation

    Get PDF
    The mitochondrial deubiquitylase USP30 negatively regulates the selective autophagy of damaged mitochondria. We present the characterisation of an N-cyano pyrrolidine compound, FT3967385, with high selectivity for USP30. We demonstrate that ubiquitylation of TOM20, a component of the outer mitochondrial membrane import machinery, represents a robust biomarker for both USP30 loss and inhibition. A proteomics analysis, on a SHSY5Y neuroblastoma cell line model, directly compares the effects of genetic loss of USP30 with chemical inhibition. We have thereby identified a subset of ubiquitylation events consequent to mitochondrial depolarisation that are USP30 sensitive. Within responsive elements of the ubiquitylome, several components of the outer mitochondrial membrane transport (TOM) complex are prominent. Thus, our data support a model whereby USP30 can regulate the availability of ubiquitin at the specific site of mitochondrial PINK1 accumulation following membrane depolarisation. USP30 deubiquitylation of TOM complex components dampens the trigger for the Parkin-dependent amplification of mitochondrial ubiquitylation leading to mitophagy. Accordingly, PINK1 generation of phospho-Ser65 ubiquitin proceeds more rapidly in cells either lacking USP30 or subject to USP30 inhibition

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding

    Full text link
    Within the broad class of multiferroics (compounds showing a coexistence of magnetism and ferroelectricity), we focus on the subclass of "improper electronic ferroelectrics", i.e. correlated materials where electronic degrees of freedom (such as spin, charge or orbital) drive ferroelectricity. In particular, in spin-induced ferroelectrics, there is not only a {\em coexistence} of the two intriguing magnetic and dipolar orders; rather, there is such an intimate link that one drives the other, suggesting a giant magnetoelectric coupling. Via first-principles approaches based on density functional theory, we review the microscopic mechanisms at the basis of multiferroicity in several compounds, ranging from transition metal oxides to organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic frameworks, MOFs)Comment: 22 pages, 9 figure
    corecore