19,207 research outputs found

    A 3D radiative transfer framework IX. Time dependence

    Full text link
    Context. Time-dependent, 3D radiation transfer calculations are important for the modeling of a variety of objects, from supernovae and novae to simulations of stellar variability and activity. Furthermore, time-dependent calculations can be used to obtain a 3D radiative equilibrium model structure via relaxation in time. Aims. We extend our 3D radiative transfer framework to include direct time dependence of the radiation field; i.e., the ∂I/∂t\partial I/ \partial t terms are fully considered in the solution of radiative transfer problems. Methods. We build on the framework that we have described in previous papers in this series and develop a subvoxel method for the ∂I/∂t\partial I/\partial t terms. Results. We test the implementation by comparing the 3D results to our well tested 1D time dependent radiative transfer code in spherical symmetry. A simple 3D test model is also presented. Conclusions. The 3D time dependent radiative transfer method is now included in our 3D RT framework and in PHOENIX/3D.Comment: A&A in press, 7 pages, 14 figure

    Preliminary Spectral Analysis of SN 1994I

    Full text link
    We present optical spectra of the Type Ic supernova 1994I in M51 and preliminary non-LTE analysis of the spectra. Our models are not inconsistent with the explosions of C+O cores of massive stars. While we find no direct evidence for helium in the optical spectra, our models cannot rule out small amounts of helium. More than 0.1~\msol\ of helium seems unlikely.Comment: LaTeX, MN style, psfig, and natbib substyles, 7 pages, 4 figures, to appear in MNRAS. Postscript file available from http://www.nhn.uoknor.edu/~baro

    On the attenuation coefficient of monomode periodic waveguides

    Get PDF
    It is widely accepted that, on ensemble average, the transmission T of guided modes decays exponentially with the waveguide length L due to small imperfections, leading to the important figure of merit defined as the attenuation-rate coefficient alpha = -/L. In this letter, we evidence that the exponential-damping law is not valid in general for periodic monomode waveguides, especially as the group velocity decreases. This result that contradicts common beliefs and experimental practices aiming at measuring alpha is supported by a theoretical study of light transport in the limit of very small imperfections, and by numerical results obtained for two waveguide geometries that offer contrasted damping behaviours

    Sex differences in eye gaze and symbolic cueing of attention

    Get PDF
    Observing a face with averted eyes results in a reflexive shift of attention to the gazed-at location. Here we present results that show that this effect is weaker in males than in females (Experiment 1). This result is predicted by the ‘extreme male brain’ theory of autism (Baron-Cohen, 2003), which suggests that males in the normal population should display more autism-like traits than females (e.g., poor joint attention). Indeed, participants′ scores on the Autism-Spectrum Quotient (Baron-Cohen, Wheelwright, Stott, Bolton, & Goodyear, 2001) negatively correlated with cueing magnitude. Furthermore, exogenous orienting did not differ between the sexes in two peripheral cueing experiments (Experiments 2a and 2b). However, a final experiment showed that using non-predictive arrows instead of eyes as a central cue also revealed a large gender difference. This demonstrates that reduced orienting from central cues in males generalizes beyond gaze cues. These results show that while peripheral cueing is equivalent in the male and female brains, the attention systems of the two sexes treat noninformative symbolic cues very differently

    Near-infrared light curves of type Ia supernovae

    Full text link
    Aims. With our time-dependent model atmosphere code PHOENIX, our goal is to simulate light curves and spectra of hydrodynamical models of all types of supernovae. In this work, we simulate near-infrared light curves of SNe Ia and confirm the cause of the secondary maximum. Methods. We apply a simple energy solver to compute the evolution of an SN Ia envelope during the free expansion phase. Included in the solver are energy changes due to expansion, the energy deposition of {\gamma}-rays and interaction of radiation with the material. Results. We computed theoretical light curves of several SN Ia hydrodynamical models in the I, J, H, and K bands and compared them to the observed SN Ia light curves of SN 1999ee and SN 2002bo. By changing a line scattering parameter in time, we obtained quite reasonable fits to the observed near-infrared light curves. This is a strong hint that detailed NLTE effects in IR lines have to be modeled, which will be a future focus of our work. Conclusions. We found that IR line scattering is very important for the near-infrared SN Ia light curve modeling. In addition, the recombination of Fe III to Fe II and of Co III to Co II is responsible for the secondary maximum in the near-infrared bands. For future work the consideration of NLTE for all lines (including the IR subordinate lines) will be crucial.Comment: 5 pages, 12 figures, A&A in pres

    Time-dependent radiative transfer with PHOENIX

    Full text link
    Aims. We present first results and tests of a time-dependent extension to the general purpose model atmosphere code PHOENIX. We aim to produce light curves and spectra of hydro models for all types of supernovae. Methods. We extend our model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative transfer in a special relativistic framework. A simple hydrodynamics solver was implemented to keep track of the energy conservation of the atmosphere during free expansion. Results. The correct operation of the new additions to PHOENIX were verified in test calculations. Conclusions. We have shown the correct operation of our extension to time-dependent radiative transfer and will be able to calculate supernova light curves and spectra in future work.Comment: 7 pages, 12 figure

    Colloidal stability of tannins: astringency, wine tasting and beyond

    Full text link
    Tannin-tannin and tannin-protein interactions in water-ethanol solvent mixtures are studied in the context of red wine tasting. While tannin self-aggregation is relevant for visual aspect of wine tasting (limpidity and related colloidal phenomena), tannin affinities for salivary proline-rich proteins is fundamental for a wide spectrum of organoleptic properties related to astringency. Tannin-tannin interactions are analyzed in water-ethanol wine-like solvents and the precipitation map is constructed for a typical grape tannin. The interaction between tannins and human salivary proline-rich proteins (PRP) are investigated in the framework of the shell model for micellization, known for describing tannin-induced aggregation of beta-casein. Tannin-assisted micellization and compaction of proteins observed by SAXS are described quantitatively and discussed in the case of astringency
    • …
    corecore