308 research outputs found

    A componential approach to individual differences in hypnotizability

    Get PDF
    Although responsiveness to hypnotic suggestions (hypnotizability) typically is conceptualized and studied as a singular homogeneous capability, numerous lines of evidence suggest instead that it is a hierarchically structured cognitive capacity comprising a core superordinate ability and ancillary subordinate component abilities. After reviewing current approaches to the measurement of hypnotizability and componential approaches to other cognitive capabilities, we highlight outstanding questions in the field and argue for a componential approach to the study of hypnotizability. Such an approach assumes that hypnotizability is not a unitary construct but is rooted in multiple subabilities that interact to give rise to individual differences that are expressed within specific contexts. We revisit previous componential work on hypnotizability and propose a series of steps by which a componential model can be more rigorously interrogated and integrated with contemporary advances in our understanding of human cognition

    Interactions between the Somali Current eddies during the summer monsoon: insights from a numerical study

    Get PDF
    International audienceThree hindcast simulations of the global ocean circulation differing by resolution (1/4 or 1/12°) or parametrization or atmospheric forcing are used to describe the interactions between the large anticyclonic eddies generated by the Somali Current system during the Southwest Monsoon. The present investigation of the Somalian coherent eddy structures allows us to identify the origin and the subsequent development of the cyclones flanked upon the Great Whirl (GW) previously identified by Beal and Dono-hue (2013) in satellite observations and to establish that similar cyclones are also flanked upon the Southern Gyre (SG). These cyclones are identified as potential actors in mixing water masses within the large eddies and offshore the coast of Somalia. All three simulations bring to light that during the period when the Southwest Monsoon is well established, the SG moves northward along the Somali coast and encounters the GW. The interaction between the SG and the GW is a collision without merging, in a way that has not been described in observations up to now. During the collision the GW is pushed to the east of Socotra Island, sheds several smaller patches of anticyclonic vorticity, and often reforms into the Socotra Eddy, thus proposing a formation mechanism for that eddy. During this process the GW gives up its place to the SG. This process is robust throughout the three simulations

    Transfer of particulate matter from the Northwestern Mediterranean continental margin: Variability and controlling factors

    Get PDF
    International audienceLong-term observations of monthly downward particle fluxes and hourly currents and temperaturewere initiated in 1993 in two canyons of the continental margin of the Gulf of Lion. The goals of thissurvey were to estimate its contribution to the CO 2 global budget and to understand the role offorcing factors in the control of present-day particle exchange across this margin. A previousstatistical analysis of the long-term time series suggested that variability in the transfer of particulatematter to the deep ocean could be the result of the effect of the meandering of the Northern Currentand by dense water formation in winter rather than variations in the sources of matter. Numericalsimulations have been carried out to consider these hypotheses. A model is used to examine theimpact of local atmospheric forcing (wind stress, heat fluxes, precipitation–evaporation budget) onthe variability of the oceanic circulation and of mass fluxes within the canyons from December toApril, for five consecutive years between 1996 and 2001. Results show an east-west gradient of massexport on the shelf and a positive correlation between anomalies of dense water formation rates andinterannual variability of particle fluxes. However, in the eastern part of the Gulf, the simulated massexport from the shelf is not significant, even during a winter of strong convection, when the measuredparticle fluxes are at maxima. Moreover, although the model suggests that the dense water formationcould be the major hydrodynamic forcing factor, this process is not sufficient to completely explainthe space and time variations of observed particle fluxes, especially at depth

    Simulations of a Line W-based observing system for the Atlantic meridional overturning circulation

    Get PDF
    In a series of observing system simulations, we test whether the Atlantic meridional overturning circulation (AMOC) can be observed based on the existing Line W deep western boundary array. We simulate a Line W array, which is extended to the surface and to the east to cover the basin to the Bermuda Rise. In the analyzed ocean circulation model ORCA025, such an extended Line W array captures the main characteristics of the western boundary current. Potential trans-basin observing systems for the AMOC are tested by combining the extended Line W array with a mid-ocean transport estimate obtained from thermal wind "measurements" and Ekman transport to the total AMOC (similarly to Hirschi et al., Geophys Res Lett 30(7):1413, 2003). First, we close Line W zonally supplementing the western boundary array with several "moorings" in the basin (Line W-32A degrees N). Second, we supplement the western boundary array with a combination of observations at Bermuda and the eastern part of the RAPID array at 26A degrees N (Line W-B-RAPID). Both, a small number of density profiles across the basin and also only sampling the eastern and western boundary, capture the variability of the AMOC at Line W-32A degrees N and Line W-B-RAPID. In the analyzed model, the AMOC variability at both Line W-32A degrees N and Line W-B-RAPID is dominated by the western boundary current variability. Away from the western boundary, the mid-ocean transport (east of Bermuda) shows no significant relation between the two Line W-based sections and 26A degrees N. Hence, a Line W-based AMOC estimate could yield an estimate of the meridional transport that is independent of the 26A degrees N RAPID estimate. The model-based observing system simulations presented here provide support for the use of Line W as a cornerstone for a trans-basin AMOC observing system

    The Conrad Rise as an obstruction to the Antarctic Circumpolar Current

    Get PDF
    The Antarctic Circumpolar Current (ACC) carries water freely around the whole continent of Antarctica, but not without obstructions. Some, such as the Drake Passage, constrict its path, while others, such as mid-ocean ridges, may induce meandering in the current's cores and may cause the genesis of mesoscale turbulence. It has recently been demonstrated that some regions that are only relatively shallow may also have a major effect on the flow patterns of the ACC. This is here shown to be particularly true for the Conrad Rise. Using the trajectories of surface drifters, altimetry and the simulated velocities from a numerical model, we show that the ACC bifurcates at the western side of this Rise. In this process it forms two intense jets at the two meridional extremities of the Rise with a relatively stagnant water body over the Rise itself. Preliminary results from a recent cruise provide compelling support for this portrayal

    Regional Patterns of Sea Level Change Related to Interannual Variability and Multidecadal Trends in the Atlantic Meridional Overturning Circulation

    Get PDF
    Some studies of ocean climate model experiments suggest that regional changes in dynamic sea level could provide a valuable indicator of trends in the strength of the Atlantic meridional overturning circulation (MOC). This paper describes the use of a sequence of global ocean–ice model experiments to show that the diagnosed patterns of sea surface height (SSH) anomalies associated with changes in the MOC in the North Atlantic (NA) depend critically on the time scales of interest. Model hindcast simulations for 1958–2004 reproduce the observed pattern of SSH variability with extrema occurring along the Gulf Stream (GS) and in the subpolar gyre (SPG), but they also show that the pattern is primarily related to the wind-driven variability of MOC and gyre circulation on interannual time scales; it is reflected also in the leading EOF of SSH variability over the NA Ocean, as described in previous studies. The pattern, however, is not useful as a “fingerprint” of longer-term changes in the MOC: as shown with a companion experiment, a multidecadal, gradual decline in the MOC [of 5 Sv (1 Sv ≡ 106 m3 s−1) over 5 decades] induces a much broader, basin-scale SSH rise over the mid-to-high-latitude NA, with amplitudes of 20 cm. The detectability of such a trend is low along the GS since low-frequency SSH changes are effectively masked here by strong variability on shorter time scales. More favorable signal-to-noise ratios are found in the SPG and the eastern NA, where a MOC trend of 0.1 Sv yr−1 would leave a significant imprint in SSH already after about 20 years

    False claims about false memory research

    Get PDF
    Pezdek and Lam [Pezdek, K. & Lam, S. (2007). What research paradigms have cognitive psychologists used to study “False memory,” and what are the implications of these choices? Consciousness and Cognition] claim that the majority of research into false memories has been misguided. Specifically, they charge that false memory scientists have been (1) misusing the term “false memory,” (2) relying on the wrong methodologies to study false memories, and (3) misapplying false memory research to real world situations. We review each of these claims and highlight the problems with them. We conclude that several types of false memory research have advanced our knowledge of autobiographical and recovered memories, and that future research will continue to make significant contributions to how we understand memory and memory errors
    • 

    corecore