81 research outputs found

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Genetic susceptibility for atrial fibrillation in patients undergoing atrial fibrillation ablation.

    No full text
    Background:Ablation is a widely used therapy for atrial fibrillation (AF); however, arrhythmia recurrence and repeat procedures are common. Studies examining surrogate markers of genetic susceptibility to AF, such as family history and individual AF susceptibility alleles, suggest these may be associated with recurrence outcomes. Accordingly, the aim of this study was to test the association between AF genetic susceptibility and recurrence after ablation using a comprehensive polygenic risk score for AF.Methods:Ten centers from the AF Genetics Consortium identified patients who had undergone de novo AF ablation. AF genetic susceptibility was measured using a previously described polygenic risk score (N=929 single-nucleotide polymorphisms) and tested for an association with clinical characteristics and time-to-recurrence with a 3 month blanking period. Recurrence was defined as >30 seconds of AF, atrial flutter, or atrial tachycardia. Multivariable analysis adjusted for age, sex, height, body mass index, persistent AF, hypertension, coronary disease, left atrial size, left ventricular ejection fraction, and year of ablation.Results:Four thousand two hundred seventy-six patients were eligible for analysis of baseline characteristics and 3259 for recurrence outcomes. The overall arrhythmia recurrence rate between 3 and 12 months was 44% (1443/3259). Patients with higher AF genetic susceptibility were younger (P<0.001) and had fewer clinical risk factors for AF (P=0.001). Persistent AF (hazard ratio [HR], 1.39 [95% CI, 1.22-1.58]; P<0.001), left atrial size (per cm: HR, 1.32 [95% CI, 1.19-1.46]; P<0.001), and left ventricular ejection fraction (per 10%: HR, 0.88 [95% CI, 0.80-0.97]; P=0.008) were associated with increased risk of recurrence. In univariate analysis, higher AF genetic susceptibility trended towards a higher risk of recurrence (HR, 1.08 [95% CI, 0.99-1.18]; P=0.07), which became less significant in multivariable analysis (HR, 1.06 [95% CI, 0.98-1.15]; P=0.13).Conclusions:Higher AF genetic susceptibility was associated with younger age and fewer clinical risk factors but not recurrence. Arrhythmia recurrence after AF ablation may represent a genetically different phenotype compared to AF susceptibility

    Impact of nitrogen seeding on confinement and power load control of a high-triangularity JET ELMy H-mode plasma with a metal wall

    Get PDF
    This paper reports the impact on confinement and power load of the high-shape 2.5MA ELMy H-mode scenario at JET of a change from an all carbon plasma facing components to an all metal wall. In preparation to this change, systematic studies of power load reduction and impact on confinement as a result of fuelling in combination with nitrogen seeding were carried out in JET-C and are compared to their counterpart in JET with a metallic wall. An unexpected and significant change is reported on the decrease of the pedestal confinement but is partially recovered with the injection of nitrogen.Comment: 30 pages, 16 figure
    corecore