1,271 research outputs found

    Gaseous Planets, Protostars And Young Brown Dwarfs : Birth And Fate

    Get PDF
    We review recent theoretical progress aimed at understanding the formation and the early stages of evolution of giant planets, low-mass stars and brown dwarfs. Calculations coupling giant planet formation, within a modern version of the core accretion model, and subsequent evolution yield consistent determinations of the planet structure and evolution. Because of the uncertainties in the initial conditions, however, it is not possible to say whether young planets are faint or bright compared with low-mass young brown dwarfs. We review the effects of irradiation and evaporation on the evolution of short period planets and argue that substantial mass loss may have occurred for these objects. Concerning star formation, geometrical effects in protostar core collapse are examined by comparing 1D and 3D calculations. Spherical collapse is shown to overestimate the core inner density and temperature and thus to yield incorrect initial conditions for PMS or young brown dwarf evolution. Accretion is also shown to occur over a very limited fraction of the protostar surface. Accretion affects the evolution of young brown dwarfs and yields more compact structures for a given mass and age, thus fainter luminosities. This can lead to severe misinterpretations of the mass and/or age of young accreting objects from their location in the HR diagram. We argue that newborn stars and brown dwarfs should appear rapidly over an extended area in the HR diagram, depending on their accretion history, rather than on a well defined birth line. Finally, we suggest that the distinction between planets and brown dwarfs be based on an observational diagnostic, reflecting the different formation mechanisms between these two distinct populations, rather than on an arbitrary, confusing definition.Comment: Invited Review, Protostars and Planets V (Hawai, October 2005

    The mass-radius relationship from solar-type stars to terrestrial planets: a review

    Full text link
    In this review, we summarize our present knowledge of the behaviour of the mass-radius relationship from solar-type stars down to terrestrial planets, across the regime of substellar objects, brown dwarfs and giant planets. Particular attention is paid to the identification of the main physical properties or mechanisms responsible for this behaviour. Indeed, understanding the mechanical structure of an object provides valuable information about its internal structure, composition and heat content as well as its formation history. Although the general description of these properties is reasonably well mastered, disagreement between theory and observation in certain cases points to some missing physics in our present modelling of at least some of these objects. The mass-radius relationship in the overlaping domain between giant planets and low-mass brown dwarfs is shown to represent a powerful diagnostic to distinguish between these two different populations and shows once again that the present IAU distinction between these two populations at a given mass has no valid foundation.Comment: Cool Stars, Stellar Systems and the Sun 15, invited revie

    High Resolution, Differential, Near-infrared Transmission Spectroscopy of GJ 1214b

    Full text link
    The nearby star GJ 1214 hosts a planet intermediate in radius and mass between Earth and Neptune, resulting in some uncertainty as to its nature. We have observed this planet, GJ 1214b, during transit with the high-resolution, near-infrared NIRSPEC spectrograph on the Keck II telescope, in order to characterize the planet's atmosphere. By cross-correlating the spectral changes through transit with a suite of theoretical atmosphere models, we search for variations associated with absorption in the planet atmosphere. Our observations are sufficient to rule out tested model atmospheres with wavelength-dependent transit depth variations >5e-4 over the wavelength range 2.1 - 2.4 micron. Our sensitivity is limited by variable slit loss and telluric transmission effects. We find no positive signatures but successfully rule out a number of plausible atmospheric models, including the default assumption of a gaseous, H-dominated atmosphere in chemical equilibrium. Such an atmosphere can be made consistent if the absorption due to methane is reduced. Clouds can also render such an atmosphere consistent with our observations, but only if they lie higher in the atmosphere than indicated by recent optical and infrared measurements. When taken in concert with constraints from other groups, our results support a consensus model in which the atmosphere of GJ 1214b contains significant H and He, but where methane is depleted. If this depletion is the result of photochemical processes, it may also produce a haze that suppresses spectral features in the optical.Comment: 32 pages, 15 figures, preprint, accepted to ApJ, responded to referee's comments. Comments welcom

    Direct Imaging of Multiple Planets Orbiting the Star HR 8799

    Full text link
    Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step towards imaging Earth-like planets. Imaging detections are challenging due to the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter-clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our Solar System.Comment: 30 pages, 5 figures, Research Article published online in Science Express Nov 13th, 200

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games

    Discovery of a 66 mas Ultracool Binary with Laser Guide Star Adaptive Optics

    Get PDF
    We present the discovery of 2MASS J21321145+1341584AB as a closely separated (0.066") very low-mass field dwarf binary resolved in the near-infrared by the Keck II Telescope using laser guide star adaptive optics. Physical association is deduced from the angular proximity of the components and constraints on their common proper motion. We have obtained a near-infrared spectrum of the binary and find that it is best described by an L5+/-0.5 primary and an L7.5+/-0.5 secondary. Model-dependent masses predict that the two components straddle the hydrogen burning limit threshold with the primary likely stellar and the secondary likely substellar. The properties of this sytem - close projected separation (1.8+/-0.3 AU) and near unity mass ratio - are consistent with previous results for very low-mass field binaries. The relatively short estimated orbital period of this system (~7-12 yr) makes it a good target for dynamical mass measurements. Interestingly, the system's angular separation is the tightest yet for any very low-mass binary published from a ground-based telescope and is the tightest binary discovered with laser guide star adaptive optics to date.Comment: 10 pages, 3 figures; accepted for publication to A

    Structure and evolution of the first CoRoT exoplanets: Probing the Brown Dwarf/Planet overlapping mass regime

    Full text link
    We present detailed structure and evolution calculations for the first transiting extrasolar planets discovered by the space-based CoRoT mission. Comparisons between theoretical and observed radii provide information on the internal composition of the CoRoT objects. We distinguish three different categories of planets emerging from these discoveries and from previous ground-based surveys: (i) planets explained by standard planetary models including irradiation, (ii) abnormally bloated planets and (iii) massive objects belonging to the overlapping mass regime between planets and brown dwarfs. For the second category, we show that tidal heating can explain the relevant CoRoT objects, providing non-zero eccentricities. We stress that the usual assumption of a quick circularization of the orbit by tides, as usually done in transit light curve analysis, is not justified a priori, as suggested recently by Levrard et al. (2009), and that eccentricity analysis should be carefully redone for some observations. Finally, special attention is devoted to CoRoT-3b and to the identification of its very nature: giant planet or brown dwarf ? The radius determination of this object confirms the theoretical mass-radius predictions for gaseous bodies in the substellar regime but, given the present observational uncertainties, does not allow an unambiguous identification of its very nature. This opens the avenue, however, to an observational identification of these two distinct astrophysical populations, brown dwarfs and giant planets, in their overlapping mass range, as done for the case of the 8 Jupiter-mass object Hat-P-2b. (abridged)Comment: 6 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    The physics of extrasolar gaseous planets : from theory to observable signatures

    Full text link
    We review our present understanding of the physical properties of substellar objects, brown dwarfs and irradiated or non-irradiated gaseous exoplanets. This includes a description of their internal properties, mechanical structure and heat content, their atmospheric properties, thermal profile and emergent spectrum, and their evolution, in particular as irradiated companions of a close parent star. The general theory can be used to make predictions in term of detectability for the future observational projects. Special attention is devoted to the evolution of the two presently detected transit planets, HD209458B and OGLE-TR-56B. For this latter, we present a consistent evolution for its recently revised mass and show that we reproduce the observed radius within its error bars. We briefly discuss differences between brown dwarfs and gaseous planets, both in terms of mass function and formation process. We outline several arguments to show that the minimum mass for deuterium burning, recently adopted officially as the limit to distinguish the two types of objects, is unlikely to play any specific role in star formation, so that such a limit is of purely semantic nature and is not supported by a physical justification.Comment: 21 pages, 3 figure
    • …
    corecore