9 research outputs found
Unveiling extracellular matrix assembly: Insights and approaches through bioorthogonal chemistry
Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells
A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity
The use of chemically synthesized short interfering RNAs (siRNAs) is currently the method of choice to manipulate gene expression in mammalian cell culture, yet improvements of siRNA design is expectably required for successful application in vivo. Several studies have aimed at improving siRNA performance through the introduction of chemical modifications but a direct comparison of these results is difficult. We have directly compared the effect of 21 types of chemical modifications on siRNA activity and toxicity in a total of 2160 siRNA duplexes. We demonstrate that siRNA activity is primarily enhanced by favouring the incorporation of the intended antisense strand during RNA-induced silencing complex (RISC) loading by modulation of siRNA thermodynamic asymmetry and engineering of siRNA 3ā²-overhangs. Collectively, our results provide unique insights into the tolerance for chemical modifications and provide a simple guide to successful chemical modification of siRNAs with improved activity, stability and low toxicity
Targeting RNA by the Antisense Approach and a Close Look at RNA Cleavage Reaction
This thesis summarizes the results of studies on two aspects of nucleic acids. Chemically modified antisense oligonucleotides (AONs) have been evaluated with regards to their suitability for mRNA targeting in an antisense approach (Paper I ā III). The chemically modified nucleotidic units 2'-O-Me-T, 2'-O-MOE-T, oxetane-T, LNA-T, azetidine-T, aza-ENA-T, carbocyclic-ENA-T and carbocyclic-LNA-T were incorporated into 15-mer AONs and targeted against a 15-mer RNA chosen from the coding region of SV-40 large T antigen. The comparative study showed that a single modified nucleotide in the AON with North-East locked sugar (oxetane-T and azetidine-T) lowered the affinity for the complementary RNA whereas North locked sugars (LNA-T, aza-ENA-T, carbocyclic-ENA-T, and carbocyclic-LNA-T) significantly improved the affinity. A comparative RNase H digestion study showed that modifications of the same type (North-East type or North type) in different sequences gave rise to similar cleavage patterns. Determination of the Michaelis-Menten parameters by kinetic experiments showed that the modified AONs recruit RNase H resulting in enhanced turnover numbers (kcat) although with weaker enzyme-substrate binding (1/Km) compared to the unmodified AON. The modified AONs were also evaluated with regards to resistance towards snake venom phosphodiesterase and human serum to estimate their stability toward exonucleases. The aza-ENA-T and carbocyclic-ENA-T modified AONs showed improved stability compared to all other modified AONs. In general, the modified AONs with North type nucleotides (except LNA-T) were found to be superior to the North-East type as they showed improved target affinity, comparable RNase H recruitment capability and improved exonuclease stability. The second aspect studied in this thesis is based on physicochemical studies of short RNA molecules utilizing NMR based pH titration and alkaline hydrolysis reactions (Paper IV ā V). The NMR based (1H and 31P) pH titration studies revealed the effect of guaninyl ion formation, propagated electrostatically through a single stranded chain in a sequence dependent manner. The non-identical electronic character of the internucleotidic phosphodiesters was further verified by alkaline hydrolysis experiments. The internucleotidic phosphodiesters, which were influenced by guaninyl ion formation, were hydrolyzed at a faster rate than those sequences where such guaninyl ion formation was prevented by replacing G with N1-Me-G
Non-identical electronic characters of the internucleotidic phosphates in RNA modulate the chemical reactivity of the phosphodiester bonds ā ā”
We here show that the electronic properties and the chemical reactivities of the internucleotidic phosphates in the heptameric ssRNAs are dissimilar in a sequence-specific manner because of their non-identical microenvironments, in contrast with the corresponding isosequential ssDNAs. This has been evidenced by monitoring the d H8(G) shifts upon pH-dependent ionization (pK a1 ) of the central 9-guaninyl (G) to the 9-guanylate ion (G ā ), and its electrostatic effect on each of the internucleotidic phosphate anions, as measured from the resultant d 31 P shifts (pK a2 ) in the isosequential heptameric ssRNAs vis-Ć -vis ssDNAs: These oligos with single ionizable G in the centre are chosen because of the fact that the pseudoaromatic character of G can be easily modulated in a pH-dependent manner by its transformation to G ā (the 2 -OH to 2-O ā ionization effect is not detectable below pH 11.6 as evident from the N 1-Me -G analog), thereby modulating/titrating the nature of the electrostatic interactions of G to G ā with the phosphates, which therefore constitute simple models to interrogate how the variable pseudoaromatic characters of nucleobases under different sequence context (J. Am. Chem. Soc., 2004, 126, 8674-8681) can actually influence the reactivity of the internucleotide phosphates as a result of modulation of sequence context-specific electrostatic interactions. In order to better understand the impact of the electrostatic effect of the G to G ā on the tunability of the electronic character of internucleotidic phosphates in the heptameric ssRNAs 5b, 6b, 7b and 8b, we have also performed their alkaline hydrolysis at pH 12.5 at 20 ā¢ C, and have identified the preferences of the cleavage sites at various phosphates, which are p 2 , p 3 and p
Diastereoselective synthesis of 4-substituted l-prolines by intramolecular radical cyclization of N-aryl sulphonyl-N-allyl 3-bromoalanines: interesting dependence of selectivity on the nature of sulphonamido groups
Enantiopure 4-substituted L-proline derivatives have been prepared via intramolecular radical cyclization of N-aryl sulphonyl-N-allyl-3-bromo-L-alanines in high yields. Surprisingly, the extent of selectivity was found to be primarily dependent on the nature of sulphonamido aryl group and could be as high as 33:1 using naphthyl sulphonamide
Recommended from our members
Significant pKa perturbation of nucleobases is an intrinsic property of the sequence context in DNA and RNA
The pH titration and NMR studies (pH 6.6ā12.5) in the heptameric isosequential ssDNA and ssRNA molecules, [d/r(5ā-CAQ1GQ2AC-3ā, with variable Q1/Q2)], show that the pKa of the central G residue within the heptameric ssDNAs (ĪpKa = 0.67 Ā± 0.03) and ssRNAs (ĪpKa = 0.49 Ā± 0.02) is sequence-dependent. This variable pKa of the G clearly shows that its pseudoaromatic character, hence, its chemical reactivity, is strongly modulated and tuned by its sequence context. In contradistinction to the ssDNAs, the electrostatic transmission of the pKa of the G moiety to the neighboring A or C residues in the heptameric ssRNAs (as observed by the response of the aromatic marker protons of As or Cs) is found to be uniquely dependent upon the sequence composition. This demonstrates that the neighboring As or Cs in ssRNAs have variable electrostatic efficiency to interact with the central G/G-, which is owing to the variable pseudoaromatic characters (giving variable chemical reactivities) of the flanking As or Cs compared to those of the isosequential ssDNAs. The sequence-dependent variation of pKa of the central G and the modulation of its pKa transmission through the nearest-neighbors by variable electrostatic interaction is owing to the electronically coupled nature of the constituent nucleobases across the single strand, which demonstrates the unique chemical basis of the sequence context specificity of DNA or RNA in dictating the biological interaction, recognition, and function with any specific ligand
Unveiling extracellular matrix assembly : Insights and approaches through bioorthogonal chemistry
Visualizing cells, tissues, and their components specifically without interference with cellular functions, such as biochemical reactions, and cellular viability remains important for biomedical researchers worldwide. For an improved understanding of disease progression, tissue formation during development, and tissue regeneration, labeling extracellular matrix (ECM) components secreted by cells persists is required. Bioorthogonal chemistry approaches offer solutions to visualizing and labeling ECM constituents without interfering with other chemical or biological events. Although biorthogonal chemistry has been studied extensively for several applications, this review summarizes the recent advancements in using biorthogonal chemistry specifically for metabolic labeling and visualization of ECM proteins and glycosaminoglycans that are secreted by cells and living tissues. Challenges, limitations, and future directions surrounding biorthogonal chemistry involved in the labeling of ECM components are discussed. Finally, potential solutions for improvements to biorthogonal chemical approaches are suggested. This would provide theoretical guidance for labeling and visualization of de novo proteins and polysaccharides present in ECM that are cell-secreted for example during tissue remodeling or in vitro differentiation of stem cells