24 research outputs found
Untersuchungen zu den Wechselwirkungen zwischen unter Tage lebenden Mikroorganismen mit Uran und deren Einfluss auf das Migrationsverhalten von Uran in gefluteten Urangruben und Spektroskopische Bestimmung der Bindungsform (Speziation) trivalenter Actinide/Lanthanide in Biofluiden des menschlichen Gastrointestinaltraltes und im Blut
Teil A:
Es wurde gezeigt, dass das Transportverhalten von Uran in der Umwelt und an den ehemaligen UranabbaustĂ€tten stark von der Anwesenheit und AktivitĂ€t natĂŒrlich vorkommender Mikroorganismen abhĂ€ngt. Die Untersuchungen zeigten, dass die Isolate eine hohe Toleranz gegenĂŒber Uran aufweisen und in der Lage sind, relativ hohe Mengen an Uran zu immobilisieren und aus der umgebenden Lösung zu entfernen. Durch anaerobe Versuche konnte gezeigt werden, dass die mikrobielle Reduktion von Uran(VI) allein durch die Zugabe von 10 mM Glycerin bei zukĂŒnftigen Anwendungen als in situ Biosanierungsapplikationen genutzt werden könnte. Die Ergebnisse dieser Arbeit konnten die Wechselwirkungsmechanismen zwischen natĂŒrlich vorkommenden Mikroorganismen und Uran im Detail beschreiben und neue ZusammenhĂ€nge zwischen aktivem und inaktivem Stoffwechsel der Mikroorganismen zeigen. Zusammenfassend können diese einen wertvollen Beitrag zur Entwicklung von BiosanierungsansĂ€tzen fĂŒr die Behandlung von Radionuklid-kontaminierten Standorten aus der ehemaligen Bergbauindustrie leisten.
Teil B:
Im Speichel dominiert neben einem kleinen Bindungsanteil an dem Enzym alpha-Amylase die Komplexierung mit anorganischen Liganden, im Magen dominiert aufgrund des sauren pH-Wertes das Eu- bzw. Cm-Aquo-Ion, und im Darm dominiert neben anorganischen Komplexen die Bindung der Metallionen an das Glycoprotein Mucin. Die starke KomplexfĂ€higkeit von Mucin gegenĂŒber dreiwertigen f-Elementen könnte die Absorption dieser im menschlichen Körper unterdrĂŒcken und deren Exkretion fördern. Die Ergebnisse dieser Arbeit geben neue Einblicke in das biochemische Verhalten dreiwertiger f-Elemente und können zudem zur EinschĂ€tzung von Gesundheitsrisiken nach der Inkorporation von Radionukliden und der Entwicklung von Dekontaminationstherapien beitragen
Decrease of U(VI) Immobilization Capability of the Facultative Anaerobic Strain Paenibacillus sp. JG-TB8 under Anoxic Conditions Due to Strongly Reduced Phosphatase Activity
Interactions of a facultative anaerobic bacterial isolate named Paenibacillus sp. JG-TB8 with U(VI) were studied under oxic and anoxic conditions in order to assess the influence of the oxygen-dependent cell metabolism on microbial uranium mobilization and immobilization. We demonstrated that aerobically and anaerobically grown cells of Paenibacillus sp. JG-TB8 accumulate uranium from aqueous solutions under acidic conditions (pH 2 to 6), under oxic and anoxic conditions. A combination of spectroscopic and microscopic methods revealed that the speciation of U(VI) associated with the cells of the strain depend on the pH as well as on the aeration conditions. At pH 2 and pH 3, uranium was exclusively bound by organic phosphate groups provided by cellular components, independently on the aeration conditions. At higher pH values, a part (pH 4.5) or the total amount (pH 6) of the dissolved uranium was precipitated under oxic conditions in a meta-autunite-like uranyl phosphate mineral phase without supplying an additional organic phosphate substrate. In contrast to that, under anoxic conditions no mineral formation was observed at pH 4.5 and pH 6, which was clearly assigned to decreased orthophosphate release by the cells. This in turn was caused by a suppression of the indigenous phosphatase activity of the strain. The results demonstrate that changes in the metabolism of facultative anaerobic microorganisms caused by the presence or absence of oxygen can decisively influence U(VI) biomineralization.This work was partially funded by the grants CGL2009-09760 and CGL2012-36505 (Ministerio de Ciencia e InnovaciĂłn, Spain)
Effect of Ba(II), Eu(III), and U(VI) on rat NRK-52E and human HEK-293 kidney cells in vitro
Heavy metals pose a potential health risk to humans when they enter the organism. Renal excretion is one of the elimination pathways and, therefore, investigations with kidney cells are of particular interest. In the present study, the effects of Ba(II), Eu(III), and U(VI) on rat and human renal cells were investigated in vitro. A combination of microscopic, biochemical, analytical, and spectroscopic methods was used to assess cell viability, cell death mechanisms, and intracellular metal uptake of exposed cells as well as metal speciation in cell culture medium and inside cells. For Eu(III) and U(VI), cytotoxicity and intracellular uptake are positively correlated and depend on concentration and exposure time. An enhanced apoptosis occurs upon Eu(III) exposure whereas U(VI) exposure leads to enhanced apoptosis and (secondary) necrosis. In contrast to that, Ba(II) exhibits no cytotoxic effect at all and its intracellular uptake is time-independently very low. In general, both cell lines give similar results with rat cells being more sensitive than human cells. The dominant binding motifs of Eu(III) in cell culture medium as well as cell suspensions are (organo-) phosphate groups. Additionally, a protein complex is formed in medium at low Eu(III) concentration. In contrast, U(VI) forms a carbonate complex in cell culture medium as well as each one phosphate and carbonate complex in cell suspensions. Using chemical microscopy, Eu(III) was localized in granular, vesicular compartments near the nucleus and the intracellular Eu(III) species equals the one in cell suspensions. Overall, this study contributes to a better understanding of the interactions of Ba(II), Eu(III), and U(VI) on a cellular and molecular level. Since Ba(II) and Eu(III) serve as inactive analogs of the radioactive Ra(II) and Am(III)/Cm(III), the results of this study are also of importance for the health risk assessment of these radionuclides
Gold-Based Coronands as Hosts for M3+ Metal Ions: Ring Size Matters
The controlled, self-assembled synthesis of multinuclear coordination compounds can be performed via different approaches. Frequently, steric, geometric and/or electronic factors located at the ligand systems predefine the way in which metal ions can assemble them to large aggregates. For the compounds in the present paper, also the Pearsonâs acidities and preferred coordination geometries of the metal ions were used as organization principles. The ligand under study, 2,6-dipicolinoylbis(N,N-diethylthiourea), H2L1ethyl, possesses âsoftâ sulfur and âhardâ nitrogen and oxygen donors. One-pot reactions of this compound with [AuCl(tht)] (tht = tetrahydrothiophene) and M3+ salts (M = Sc, Y, La, Ln, Ga, In) give products with gold-based {Au3(L1ethyl)3}3+ or {Au2(L1ethyl)2}2+ coronands, which host central M3+ ions. The formation of such units is templated by the M3+ ions and the individual size of the coronand rings is dependent on the ionic radii of the central ions in a way that small ions such as Ga3+ form a [Gaâ{Au2(L1ethyl)2}]+ assembly, while larger ions (starting from Sc3+/In3+) establish neutral [Mâ{Au3(L1ethyl)3}] units with nine-coordinate central ions
Recommended from our members
The mobilization of actinides by microbial ligands taking into consideration the final storage of nuclear waste : interactions of selected actinides U(VI), Cm(III), and Np(V) with pyoverdins secreted by Pseudomonas fluorescens and related model compounds
[no abstract available
Untersuchungen zu den Wechselwirkungen zwischen unter Tage lebenden Mikroorganismen mit Uran und deren Einfluss auf das Migrationsverhalten von Uran in gefluteten Urangruben und Spektroskopische Bestimmung der Bindungsform (Speziation) trivalenter Actinide/Lanthanide in Biofluiden des menschlichen Gastrointestinaltraltes und im Blut
Teil A:
Es wurde gezeigt, dass das Transportverhalten von Uran in der Umwelt und an den ehemaligen UranabbaustĂ€tten stark von der Anwesenheit und AktivitĂ€t natĂŒrlich vorkommender Mikroorganismen abhĂ€ngt. Die Untersuchungen zeigten, dass die Isolate eine hohe Toleranz gegenĂŒber Uran aufweisen und in der Lage sind, relativ hohe Mengen an Uran zu immobilisieren und aus der umgebenden Lösung zu entfernen. Durch anaerobe Versuche konnte gezeigt werden, dass die mikrobielle Reduktion von Uran(VI) allein durch die Zugabe von 10 mM Glycerin bei zukĂŒnftigen Anwendungen als in situ Biosanierungsapplikationen genutzt werden könnte. Die Ergebnisse dieser Arbeit konnten die Wechselwirkungsmechanismen zwischen natĂŒrlich vorkommenden Mikroorganismen und Uran im Detail beschreiben und neue ZusammenhĂ€nge zwischen aktivem und inaktivem Stoffwechsel der Mikroorganismen zeigen. Zusammenfassend können diese einen wertvollen Beitrag zur Entwicklung von BiosanierungsansĂ€tzen fĂŒr die Behandlung von Radionuklid-kontaminierten Standorten aus der ehemaligen Bergbauindustrie leisten.
Teil B:
Im Speichel dominiert neben einem kleinen Bindungsanteil an dem Enzym alpha-Amylase die Komplexierung mit anorganischen Liganden, im Magen dominiert aufgrund des sauren pH-Wertes das Eu- bzw. Cm-Aquo-Ion, und im Darm dominiert neben anorganischen Komplexen die Bindung der Metallionen an das Glycoprotein Mucin. Die starke KomplexfĂ€higkeit von Mucin gegenĂŒber dreiwertigen f-Elementen könnte die Absorption dieser im menschlichen Körper unterdrĂŒcken und deren Exkretion fördern. Die Ergebnisse dieser Arbeit geben neue Einblicke in das biochemische Verhalten dreiwertiger f-Elemente und können zudem zur EinschĂ€tzung von Gesundheitsrisiken nach der Inkorporation von Radionukliden und der Entwicklung von Dekontaminationstherapien beitragen
Synthesis of S-Layer Conjugates and Evaluation of Their Modifiability as a Tool for the Functionalization and Patterning of Technical Surfaces
Chemical functional groups of surface layer (S-layer) proteins were chemically modified in order to evaluate the potential of S-layer proteins for the introduction of functional molecules. S-layer proteins are structure proteins that self-assemble into regular arrays on surfaces. One general feature of S-layer proteins is their high amount of carboxylic and amino groups. These groups are potential targets for linking functional molecules, thus producing reactive surfaces. In this work, these groups were conjugated with the amino acid tryptophan. In another approach, SH-groups were chemically inserted in order to extend the spectrum of modifiable groups. The amount of modifiable carboxylic groups was further evaluated by potentiometric titration in order to evaluate the potential efficiency of S-layer proteins to work as matrix for bioconjugations. The results proved that S-layer proteins can work as effective matrices for the conjugation of different molecules. The advantage of using chemical modification methods over genetic methods lies in its versatile usage enabling the attachment of biomolecules, as well as fluorescent dyes and inorganic molecules. Together with their self-assembling properties, S-layer proteins are suitable as targets for bioconjugates, thus enabling a nanostructuring and bio-functionalization of surfaces, which can be used for different applications like biosensors, filter materials, or (bio)catalytic surfaces
Eu(III) and Cm(III) Complexation by the Aminocarboxylates NTA, EDTA, and EGTA Studied with NMR, TRLFS, and ITCâAn Improved Approach to More Robust Thermodynamics
The complex formation of Eu(III) and Cm(III) was studied via tetradentate, hexadentate, and octadentate coordinating ligands of the aminopolycarboxylate family, viz., nitrilotriacetate (NTA3â), ethylenediaminetetraacetate (EDTA4â), and ethylene glycol-bis(2-aminoethyl ether)-N,N,NâČ,NâČ-tetraacetate (EGTA4â), respectively. Based on the complexonesâ pKa values obtained from 1H nuclear magnetic resonance (NMR) spectroscopic pH titration, complex formation constants were determined by means of the parallel-factor-analysis-assisted evaluation of Eu(III) and Cm(III) time-resolved laser-induced fluorescence spectroscopy (TRLFS). This was complemented by isothermal titration calorimetry (ITC), providing the enthalpy and entropy of the complex formation. This allowed us to obtain genuine species along with their molecular structures and corresponding reliable thermodynamic data. The three investigated complexones formed 1:1 complexes with both Eu(III) and Cm(III). Besides the established Eu(III)âNTA 1:1 and 1:2 complexes, we observed, for the first time, the existence of a Eu(III)âNTA 2:2 complex of millimolar metal and ligand concentrations. Demonstrated for thermodynamic studies on Eu(III) and Cm(III) interaction with complexones, the utilized approach is commonly applicable to many other metalâligand systems, even to high-affinity ligands
Structural parameters of the uranium complexes formed by the cells of <i>Paenibacillus</i> sp. JG-TB8.
<p>Standard deviations as estimated by EXAFSPAK are given in parenthesis.</p>a<p>Errors in coordination numbers are ±25%.</p>b<p>Errors in distance are ±0.02 Ă
.</p>c<p>Debye-Waller factor.</p>d<p>Parameter fixed for calculation, Debye-Waller factor of the U-P, U-C and U-Cdis path were fixed acccording to the Debye-Waller factors calculated for the corresponding model compounds (see references 42 and 43).</p>e<p>Coordination number linked twice and Debye-Waller factor once to the N and Ï<sup>2</sup> of the U-P path.</p>f<p>Coordination number (N) linked to N of U-C<sub>1</sub> path.</p><p>Structural parameters of the uranium complexes formed by the cells of <i>Paenibacillus</i> sp. JG-TB8.</p
Uranium(VI) Binding Forms in Selected Human Body Fluids: Thermodynamic Calculations versus Spectroscopic Measurements
Human
exposure to uranium increasingly becomes a subject of interest
in many scientific disciplines such as environmental medicine, toxicology,
and radiation protection. Knowledge about uranium chemical binding
forms (speciation) in human body fluids can be of great importance
to understand not only its biokinetics but also its relevance in risk
assessment and in designing decorporation therapy in the case of accidental
overexposure. In this study, thermodynamic calculations of uranium
speciation in relevant simulated and original body fluids were compared
with spectroscopic data after ex-situ uranium addition. For the first
time, experimental data on UÂ(VI) speciation in body fluids (saliva,
sweat, urine) was obtained by means of cryogenic time-resolved laser-induced
fluorescence spectroscopy (cryo-TRLFS) at 153 K. By using the time
dependency of fluorescence decay and the band positions of the emission
spectra, various uranyl complexes were demonstrated in the studied
samples. The variations of the body fluids in terms of chemical composition,
pH, and ionic strength resulted in different binding forms of UÂ(VI).
The speciation of UÂ(VI) in saliva and in urine was affected by the
presence of bioorganic ligands, whereas in sweat, the distribution
depends mainly on inorganic ligands. We also elucidated the role of
biological buffers, i.e., phosphate (H<sub>2</sub>PO<sub>4</sub><sup>â</sup>/HPO<sub>4</sub><sup>2â</sup>) on UÂ(VI) distribution,
and the system Ca<sup>2+</sup>/UO<sub>2</sub><sup>2+</sup>/PO<sub>4</sub><sup>3â</sup> was discussed in detail in both saliva
and urine. The theoretical speciation calculations of the main UÂ(VI)
species in the investigated body fluids were significantly consistent
with the spectroscopic data. Laser fluorescence spectroscopy showed
success and reliability for direct determination of UÂ(VI) in such
biological matrices with the possibility for further improvement