250 research outputs found

    Allosteric Modulators of Steroid Hormone Receptors : Structural Dynamics and Gene Regulation

    Get PDF
    Peer reviewedPublisher PD

    Estrogen receptor independent neurotoxic mechanism of bisphenol A, an environmental estrogen

    Get PDF
    Bisphenol A (BPA), a ubiquitous environmental contaminant, has been shown to cause developmental toxicity and carcinogenic effects. BPA may have physiological activity through estrogen receptor (ER) -α and -β, which are expressed in the central nervous system. We previously found that exposure of BPA to immature mice resulted in behavioral alternation, suggesting that overexposure of BPA could be neurotoxic. In this study, we further investigated the molecular neurotoxic mechanisms of BPA. BPA increased vulnerability (decrease of cell viability and differentiation, and increase of apoptotic cell death) of undifferentiated PC12 cells and cortical neuronal cells isolated from gestation 18 day rat embryos in a concentration-dependent manner (more than 50 µM). The ER antagonists, ICI 182,780, and tamoxifen, did not block these effects. The cell vulnerability against BPA was not significantly different in the PC12 cells overexpressing ER-α and ER-β compared with PC12 cells expressing vector alone. In addition, there was no difference observed between BPA and 17-β estradiol, a well-known agonist of ER receptor in the induction of neurotoxic responses. Further study of the mechanism showed that BPA significantly activated extracellular signal-regulated kinase (ERK) but inhibited anti-apoptotic nuclear factor kappa B (NF-κB) activation. In addition, ERK-specific inhibitor, PD 98,059, reversed BPA-induced cell death and restored NF-κB activity. This study demonstrated that exposure to BPA can cause neuronal cell death which may eventually be related with behavioral alternation in vivo. However, this neurotoxic effect may not be directly mediated through an ER receptor, as an ERK/NF-κB pathway may be more closely involved in BPA-induced neuronal toxicity

    Expression of estrogen receptor beta in the breast carcinoma of BRCA1 mutation carriers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancers (BC) in women carrying mutations in BRCA1 gene are more frequently estrogen receptor negative than the nonhereditary BC. Nevertheless, tamoxifen has been found to have a protective effect in preventing contralateral tumors in BRCA1 mutation carriers. The identification of the second human estrogen receptor, ERβ, raised a question of its role in hereditary breast cancer. The aim of this study was to assess the frequency of ERα, ERβ, PgR (progesterone receptor) and HER-2 expression in breast cancer patients with mutated <it>BRCA1 </it>gene and in the control group.</p> <p>Methods</p> <p>The study group consisted of 48 women with <it>BRCA1 </it>gene mutations confirmed by multiplex PCR assay. The patients were tested for three most common mutations of BRCA1 affecting the Polish population (5382insC, C61G, 4153delA). Immunostaining for ERα, ERβ and PgR (progesterone receptor) was performed using monoclonal antibodies against ERα, PgR (DakoCytomation), and polyclonal antibody against ERβ (Chemicon). The EnVision detection system was applied. The study population comprised a control group of 120 BC operated successively during the years 1998–99.</p> <p>Results</p> <p>The results of our investigation showed that <it>BRCA1 </it>mutation carriers were more likely to have ERα-negative breast cancer than those in the control group. Only 14.5% of <it>BRCA1</it>-related cancers were ERα-positive compared with 57.5% in the control group (<it>P </it>< 0.0001). On the contrary, the expression of ERβ protein was observed in 42% of <it>BRCA1</it>-related tumors and in 55% of the control group. An interesting finding was that most hereditary cancers (75% of the whole group) were triple-negative: ERα(-)/PgR(-)/HER-2(-) but almost half of this group (44.4%) showed the expression of ERβ.</p> <p>Conclusion</p> <p>In the case of <it>BRCA1</it>-associated tumors the expression of ERβ was significantly higher than the expression of ERα. This may explain the effectiveness of tamoxifen in preventing contralateral breast cancer development in <it>BRCA1 </it>mutation carriers.</p

    Oestrogen receptor β and neoadjuvant therapy with tamoxifen: prediction of response and effects of treatment

    Get PDF
    In order to elucidate the relative importance of oestrogen receptor (ER)α, ERβ and an ERβ variant (ERβ2/βcx) in the response of breast cancers to tamoxifen, tumour levels of each receptor were assessed in 36 patients before and after 3 months of neoadjuvant treatment with tamoxifen (20 mg daily). All patients were postmenopausal women presenting with large ERα-positive breast cancers. Clinical response to treatment was assessed by tumour volume changes as determined from sequential ultrasounds and pathological response by comparison of the tumour morphology before and after treatment. Of 33 cases, 23 (70%) were classified as having a clinical response and 16 (48%) as having a response pathologically. All tumours stained positively for ERα and ERβ and 15 out of 33 (45%) for ERβ2/βcx. There were no significant differences in quantitative expression of any receptor between tumours that subsequently responded and that did not, whether response was assessed clinically or pathologically. Tamoxifen treatment was associated with a decrease in ERα, but an increase was the most frequent change (17 out of 33) in ERβ, and no consistent change was evident in staining of the ERβ2/βcx variant. In summary, ERβ1 and ERβ2/βcx variant protein are detected in ERα-positive breast tumours but their expression is not associated with a response to tamoxifen. Differential changes in ERα and ERβ were seen with treatment

    Expression of oestrogen receptor beta (ERβ1) protein in human breast cancer biopsies

    Get PDF
    Oestrogen action is mediated via specific receptors that act as ligand-activated transcription factors. A monoclonal antibody specific to the C-terminus of human oestrogen receptor beta has been characterized and the prevalence of expression of oestrogen receptor beta protein investigated in a well defined set of breast cancers. Reverse transcription-polymerase chain reaction analysis of RNA from tissue biopsies detected oestrogen receptor beta in all samples examined. The anti-oestrogen receptor beta antibody cross reacted specifically with both long (∼59 Kd) and short (∼53 Kd) forms of recombinant oestrogen receptor beta. Western blot analysis of breast tumours contained both forms of oestrogen receptor beta protein although in some samples lower molecular weight species (32–45 Kd) were identified. Fifty-one breast cancer biopsies were examined using immunohistochemistry; 41 (80%) were immunopositive for oestrogen receptor alpha, 48 (94%) were immunopositive for oestrogen receptor beta and 38 (74.5%) co-expressed both receptors. Expression of oestrogen receptor beta was exclusively nuclear and occurred in multiple cell types. There was no quantitative relationship between staining for the two ERs although in tumours in which both receptors were present immunoexpression of oestrogen receptor alpha was invariably more intense. The significance of oestrogen receptor beta protein expression in breast cancers to therapy remains to be determined but the availability of a well characterized antibody capable of detecting oestrogen receptor beta in archive material will facilitate the process

    Mammographic density and epithelial histopathologic markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We explored the association of mammographic density, a breast cancer risk factor, with hormonal and proliferation markers in benign tissue from tumor blocks of pre-and postmenopausal breast cancer cases.</p> <p>Methods</p> <p>Breast cancer cases were recruited from a case-control study on breast density. Mammographic density was assessed on digitized prediagnostic mammograms using a computer-assisted method. For 279 participants of the original study, we obtained tumor blocks and prepared tissue microarrays (TMA), but benign tissue cores were only available for 159 women. The TMAs were immunostained for estrogen receptor alpha (ERα) and beta (ERβ), progesterone receptor (PR), HER2/neu, Ki-67, and Proliferating Cell Nuclear Antigen (PCNA). We applied general linear models to compute breast density according to marker expression.</p> <p>Results</p> <p>A substantial proportion of the samples were in the low or no staining categories. None of the results was statistically significant, but women with PR and ERβ staining had 3.4% and 2.4% higher percent density. The respective values for Caucasians were 5.7% and 11.6% but less in Japanese women (3.5% and -1.1%). Percent density was 3.4% higher in women with any Ki-67 staining and 2.2% in those with positive PCNA staining.</p> <p>Conclusion</p> <p>This study detected little evidence for an association between mammographic density and expression of steroid receptors and proliferation markers in breast tissue, but it illustrated the problems of locating tumor blocks and benign breast tissue samples for epidemiologic research. Given the suggestive findings, future studies examining estrogen effects in tissue, cell proliferation, and density in the breast may be informative.</p

    Estrogen receptor transcription and transactivation: Basic aspects of estrogen action

    Get PDF
    Estrogen signaling has turned out to be much more complex and exciting than previously thought; the paradigm shift in our understanding of estrogen action came in 1996, when the presence of a new estrogen receptor (ER), ERβ, was reported. An intricate interplay between the classical ERα and the novel ERβ is of paramount importance for the final biological effect of estrogen in different target cells

    Low-dose tamoxifen treatment in juvenile males has long-term adverse effects on the reproductive system: implications for inducible transgenics

    Get PDF
    The tamoxifen-inducible Cre system is a popular transgenic method for controlling the induction of recombination by Cre at a specific time and in a specific cell type. However, tamoxifen is not an inert inducer of recombination, but an established endocrine disruptor with mixed agonist/antagonist activity acting via endogenous estrogen receptors. Such potentially confounding effects should be controlled for, but >40% of publications that have used tamoxifen to generate conditional knockouts have not reported even the minimum appropriate controls. To highlight the importance of this issue, the present study investigated the long-term impacts of different doses of a single systemic tamoxifen injection on the testis and the wider endocrine system. We found that a single dose of tamoxifen less than 10% of the mean dose used for recombination induction, caused adverse effects to the testis and to the reproductive endocrine system that persisted long-term. These data raise significant concerns about the widespread use of tamoxifen induction of recombination, and highlight the importance of including appropriate controls in all pathophysiological studies using this means of induction
    corecore