268 research outputs found

    Syndrome de Shah Waardenberg : à propos d’un cas

    Get PDF
    Introduction : Le syndrome de Waardenburg-Shah (SWS) est une neurocristopathie caractérisée par l'association d’une surdité neurosensorielle, anomalies de la pigmentation et d'une maladie de Hirschsprung. Nous rapportons le cas d’un nouveau né.Observation : nouveau né de sexe féminin, admis à son 3éme jour de vie pour  un syndrome occlusif. L’examen clinique a objectivé  une mèche de chevaux frontale blanche avec un pli de déshydratation pâteux et un ballonnement abdominal. L’épreuve à la sonde était positive. L’ASP a montré des niveaux hydroaériques coliques et gréliques. Le bilan malformatif n’a pas objectivé d’autres anomalies.Conclusion : Le syndrome de Shah Waardenburg est une affection rare dont le pronostic reste celui de la maladie d’Hershprung

    High Latitude Radio Emission in a Sample of Edge-On Spiral Galaxies

    Get PDF
    We have mapped 16 edge-on galaxies at 20 cm using the VLA. For 5 galaxies, we could form spectral index, energy and magnetic field maps. We find that all but one galaxy show evidence for non-thermal high latitude radio continuum emission, suggesting that cosmic ray halos are common in star forming galaxies. The high latitude emission is seen over a variety of spatial scales and in discrete and/or smooth features. In general, the discrete features emanate from the disk, but estimates of CR diffusion lengths suggest that diffusion alone is insufficient to transport the particles to the high latitudes seen (> 15 kpc in one case). Thus CRs likely diffuse through low density regions and/or are assisted by other mechanisms (e.g. winds). We searched for correlations between the prevalence of high latitude radio emission and a number of other properties, including the global SFR, supernova input rate per unit star forming, and do not find clear correlations with any of these properties.Comment: 40 pages of text, 3 figures, 6 tables, and an appendix of 21 jpeg figures (which is a radio continuum catalogue of 17 galaxies). to appear in A. J. (around January 1999

    Estimating the number of components of a multicomponent nonstationary signal using the short-term time-frequency Rényi entropy

    Get PDF
    This article proposes a method for estimating the local number of signals components using the short term Rényi entropy of signals in the time-frequency plane. (Additional details can be found in the comprehensive book on Time-Frequency Signal Analysis and Processing (see http://www.elsevier.com/locate/isbn/0080443354). In addition, the most recent upgrade of the original software package that calculates Time-Frequency Distributions and Instantaneous Frequency estimators can be downloaded from the web site: www.time-frequency.net. This was the first software developed in the field, and it was first released publicly in 1987 at the 1st ISSPA conference held in Brisbane, Australia, and then continuously updated).The time-frequency Rényi entropy provides a measure of complexity of a nonstationary multicomponent signal in the time-frequency plane. When the complexity of a signal corresponds to the number of its components, then this information is measured as the Rényi entropy of the time-frequency distribution (TFD) of the signal. This article presents a solution to the problem of detecting the number of components that are present in short-time interval of the signal TFD, using the short-term Rényi entropy. The method is automatic and it does not require a prior information about the signal. The algorithm is applied on both synthetic and real data, using a quadratic separable kernel TFD. The results confirm that the short-term Rényi entropy can be an effective tool for estimating the local number of components present in the signal. The key aspect of selecting a suitable TFD is also discussed

    Robusna procedura za umetanje vodenog žiga u sliku zasnovana na Hermitovoj projekcijskoj metodi

    Get PDF
    A procedure for combined image watermarking and compression, based on the Hermite projection method is proposed. The Hermite coefficients obtained by using the Hermite expansion are used for watermark embedding. The image can be efficiently reconstructed by using a set of Hermite coefficients that is quite smaller than the number of original ones. Hence, the watermark embedding is actually done in the compressed domain, while maintaining still high image quality (measured by high PSNR). The efficiency of the proposed procedure is proven experimentally, showing high robustness even for very strong standard attacks. Moreover, the method is robust not only to the standard attacks, but to the geometrical attacks, as well. The proposed approach can be suitable for different copyright and ownership protection purposes, especially in real-applications that require image compression, such as multimedia and Internet applications, remote sensing and satellite imaging.U radu je predložena procedura za umetanje vodenog žiga u sliku i kompresiju slike zasnovana na Hermitovoj projekcijskoj metodi. Odgovarajući koeficijenti, dobiveni kao rezultat primjene razvoja slike u red Hermitovih funkcija, korišteni su za umetanje vodenog žiga watermark). S obzirom na to da se slika može efikasno rekonstruirati korištenjem znatno manjeg broja Hermitovih koeficijenata u odnosu na broj originalnih koeficijenata slike, umetanje vodenog žiga zapravo je provedeno u domeni kompresije, uz očuvanje visoke kvalitete slike (velika vrijednost PSNR). Učinkovitost predložene procedure ispitana je eksperimentalno i pokazuje značajnu otpornost na uobičajene napade. Osim uobičajenih, procedura pokazuje robusnost i na geometrijske napade. Predloženi pristup može biti korišten u različitim aplikacijama za zaštitu autorskih prava, naročito u aplikacijama koje ujedno zahtijevaju i kompresiju slike, kao što su multimedijske i internetske aplikacije, daljinsko očitavanje podataka i satelitska snimanja

    Supernova 2007bi as a pair-instability explosion

    Get PDF
    Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -- an iron-core-collapse supernova (SN). In contrast, extremely massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion. Tremendous energies (>~ 10^{52} erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding core mass to be likely ~100 M_{solar}, in which case theory unambiguously predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were synthesized, and that our observations are well fit by PISN models. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit, perhaps resulting from star formation processes similar to those that created the first stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009), including all supplementary informatio

    Observed Consequences of Presupernova Instability in Very Massive Stars

    Full text link
    This chapter concentrates on the deaths of very massive stars, the events leading up to their deaths, and how mass loss affects the resulting death. The previous three chapters emphasized the theory of wind mass loss, eruptions, and core collapse physics, but here we emphasize mainly the observational properties of the resulting death throes. Mass loss through winds, eruptions, and interacting binaries largely determines the wide variety of different types of supernovae that are observed, as well as the circumstellar environments into which the supernova blast waves expand. Connecting these observed properties of the explosions to the initial masses of their progenitor stars is, however, an enduring challenge and is especially difficult for very massive stars. Superluminous supernovae, pair instability supernovae, gamma ray bursts, and "failed" supernovae are all end fates that have been proposed for very massive stars, but the range of initial masses or other conditions leading to each of these (if they actually occur) are still very certain. Extrapolating to infer the role of very massive stars in the early universe is essentially unencumbered by observational constraints and still quite dicey.Comment: 39 pages, 5 figures, to appear as chapter in the book "Very Massive Stars in the Local Universe", ed. J. Vin

    Effects of ee+νee^- e^+ \nu_e Decays of Tau Neutrinos Near A Supernova

    Full text link
    We revisit the constraints implied by SN 1987 A observations on the decay rate of a multi-MeV ντ\nu_\tau decaying into the visible channel ντe+eνe\nu_\tau \rightarrow e^+ e^- \nu_e, if its lifetime is more than 10 {\it sec.}. We discuss its implication for the minimal left-right symmetric model with see-saw mechanism for neutrino masses. We also speculate on the possible formation of a ``giant Capacitor" in intergalactic space due to the decay of "neutronization" ντ\nu_\tau's and spin allignment possibility in the supernova.Comment: 29 Pages, Tex file, UMDHEP 94-4

    First Stars. I. Evolution without mass loss

    Full text link
    The first generation of stars was formed from primordial gas. Numerical simulations suggest that the first stars were predominantly very massive, with typical masses M > 100 Mo. These stars were responsible for the reionization of the universe, the initial enrichment of the intergalactic medium with heavy elements, and other cosmological consequences. In this work, we study the structure of Zero Age Main Sequence stars for a wide mass and metallicity range and the evolution of 100, 150, 200, 250 and 300 Mo galactic and pregalactic Pop III very massive stars without mass loss, with metallicity Z=10E-6 and 10E-9, respectively. Using a stellar evolution code, a system of 10 equations together with boundary conditions are solved simultaneously. For the change of chemical composition, which determines the evolution of a star, a diffusion treatment for convection and semiconvection is used. A set of 30 nuclear reactions are solved simultaneously with the stellar structure and evolution equations. Several results on the main sequence, and during the hydrogen and helium burning phases, are described. Low metallicity massive stars are hotter and more compact and luminous than their metal enriched counterparts. Due to their high temperatures, pregalactic stars activate sooner the triple alpha reaction self-producing their own heavy elements. Both galactic and pregalactic stars are radiation pressure dominated and evolve below the Eddington luminosity limit with short lifetimes. The physical characteristics of the first stars have an important influence in predictions of the ionizing photon yields from the first luminous objects; also they develop large convective cores with important helium core masses which are important for explosion calculations.Comment: 17 pages, 24 figures, 2 table

    Two Type Ic supernovae in low-metallicity, dwarf galaxies: diversity of explosions

    Full text link
    We present BVRI photometry and optical spectroscopy of two Type Ic supernovae SN 2007bg and SN 2007bi discovered in wide-field, non-targeted surveys and associated with sub-luminous blue dwarf galaxies. Neither SNe 2007bg nor 2007bi were found in association with an observed GRB, but are found to inhabit similar low-metallicity environments as GRB associated supernovae. The radio-bright SN 2007bg is hosted by an extremely sub-luminous galaxy of magnitude MB = -12.4+/-0.6 mag with an estimated oxygen abundance of 12+log(O/H) = 8.18+/-0.17. The lightcurve of SN 2007bg displays one of the fastest post-maximum decline rates of all broad-lined Type Ic supernovae known to date and, when combined with its high expansion velocities, a high kinetic energy to ejected mass ratio (E_K/Mej ~ 2.7). We show that SN 2007bi is possibly the most luminous Type Ic known, reaching a peak magnitude of MR ~ 21.3 mag and displays a remarkably slow decline, following the radioactive decay rate of 56Co to 56Fe throughout the course of its observed lifetime. From a simple model of the bolometric light curve of SN 2007bi we estimate a total ejected 56Ni mass of M_Ni = 3.5 - 4.5 solar masses, the largest 56Ni mass measured in the ejecta of a supernova to date. There are two models that could explain the high luminosity and large ejected 56Ni mass. One is a pair-instability supernova (PISN) which has been predicted to occur for massive stars at low metallicities. We measure the host galaxy metallicity of SN 2007bi to be 12 + log(O/H) = 8.15+/-0.15 which is somewhat high to be consistent with the PISN model. An alternative is the core-collapse of a C+O star of 20 - 40 solar masses which is the core of a star of originally 50 - 100 solar masses. (Abridged)Comment: Minor changes. 19 pages, 21 Figures. Accepted by A&

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    corecore