138 research outputs found
CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy.
Ovarian cancer and triple-negative breast cancer are among the most lethal diseases affecting women, with few targeted therapies and high rates of metastasis. Cancer cells are capable of evading clearance by macrophages through the overexpression of anti-phagocytic surface proteins called 'don't eat me' signals-including CD471, programmed cell death ligand 1 (PD-L1)2 and the beta-2 microglobulin subunit of the major histocompatibility class I complex (B2M)3. Monoclonal antibodies that antagonize the interaction of 'don't eat me' signals with their macrophage-expressed receptors have demonstrated therapeutic potential in several cancers4,5. However, variability in the magnitude and durability of the response to these agents has suggested the presence of additional, as yet unknown 'don't eat me' signals. Here we show that CD24 can be the dominant innate immune checkpoint in ovarian cancer and breast cancer, and is a promising target for cancer immunotherapy. We demonstrate a role for tumour-expressed CD24 in promoting immune evasion through its interaction with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10), which is expressed by tumour-associated macrophages. We find that many tumours overexpress CD24 and that tumour-associated macrophages express high levels of Siglec-10. Genetic ablation of either CD24 or Siglec-10, as well as blockade of the CD24-Siglec-10 interaction using monoclonal antibodies, robustly augment the phagocytosis of all CD24-expressing human tumours that we tested. Genetic ablation and therapeutic blockade of CD24 resulted in a macrophage-dependent reduction of tumour growth in vivo and an increase in survival time. These data reveal CD24 as a highly expressed, anti-phagocytic signal in several cancers and demonstrate the therapeutic potential for CD24 blockade in cancer immunotherapy
Recommended from our members
Removal of Unreacted Dinitrophenyl Hydrazine from Carbonyl Derivatives
OSU/HHMI Summer Undergraduate Research Symposium Presentation.Small molecule metabolomics is a promising new field in medicine. Studying the chemical effects of individual cellular processes is a powerful approach in determining physiological impacts of various factors such as age, cancer stage, and genetic variability at a cellular level. However, the reactive nature and small size of many molecules impedes both data collection and analysis. One common complication is the loss of reactive small molecules due to ex vivo participation in spurious side reactions during the preparation of samples for analyses such as mass spectrometry. To prevent these spurious side reactions, carbonyl compounds must first be derivatized with an agent such as dinitrophenyl hydrazine (DNPH). However, following the derivatization, excess DNPH complicates mass spectrometry results; therefore, it must be removed. The purpose of this study is to determine a method by which carbonyl compounds harvested from tissues can be derivatized with DNPH to form hydrazones that are then separated from the excess DNPH and resolubulized in a solvent compatible withmass spectrometry analysis. The development of a general method by which carbonyls harvested from tissues can be derivatized and analyzed with mass spectrometry will facilitate the study of many carbonyl-compound metabolomic pathways
Recommended from our members
Discovery of non-directional and directional pioneer transcription factors by modeling DNase profile magnitude and shape
Here we describe Protein Interaction Quantitation (PIQ), a computational method that models the magnitude and shape of genome-wide DNase profiles to facilitate the identification of transcription factor (TF) binding sites. Through the use of machine learning techniques, PIQ identified binding sites for >700 TFs from one DNase-seq experiment with accuracy comparable to ChIP-seq for motif-associated TFs (median AUC=0.93 across 303 TFs). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into pre-pancreatic and intestinal endoderm. We identified (n=120) and experimentally validated eight ‘pioneer’ TF families that dynamically open chromatin, enabling other TFs to bind to adjacent DNA. Four pioneer TF families only open chromatin in one direction from their motifs. Furthermore, we identified a class of ‘settler’ TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and non-directional pioneer activity shapes the chromatin landscape for population by settler TFs
DNase-capture reveals differential transcription factor binding modalities
We describe DNase-capture, an assay that increases the analytical resolution of DNase-seq by focusing its sequencing phase on selected genomic regions. We introduce a new method to compensate for capture bias called BaseNormal that allows for accurate recovery of transcription factor protection profiles from DNase-capture data. We show that these normalized data allow for nuanced detection of transcription factor binding heterogeneity with as few as dozens of sites
AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.Peer reviewedProo
Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape
We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.National Institutes of Health (U.S.) (Common Fund 5UL1DE019581)National Institutes of Health (U.S.) (Common Fund RL1DE019021)National Institutes of Health (U.S.) (Common Fund 5TL1EB008540)National Institutes of Health (U.S.) (Grant 1U01HG007037)National Institutes of Health (U.S.) (Grant 5P01NS055923
Recommended from our members
Author Correction: Expanded encyclopaedias of DNA elements in the human and mouse genomes
Online Correction for: https://doi.org/10.1038/s41586-020-2493-4 | Erratum for https://bura.brunel.ac.uk/handle/2438/21299In the version of this article initially published, two members of the ENCODE Project Consortium were missing from the author list. Rizi Ai (Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA) and Shantao Li (Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA) are now included in the author list. These errors have been corrected in the online version of the article : 'Expanded encyclopaedias of DNA elements in the human and mouse genomes'.https://www.nature.com/articles/s41586-021-04226-3https://www.nature.com/articles/s41586-021-04226-
- …