9 research outputs found

    Shallow whole genome sequencing for robust copy number profiling of formalin-fixed paraffin-embedded breast cancers.

    Get PDF
    Pathology archives with linked clinical data are an invaluable resource for translational research, with the limitation that most cancer samples are formalin-fixed paraffin-embedded (FFPE) tissues. Therefore, FFPE tissues are an important resource for genomic profiling studies but are under-utilised due to the low amount and quality of extracted nucleic acids. We profiled the copy number landscape of 356 breast cancer patients using DNA extracted FFPE tissues by shallow whole genome sequencing. We generated a total of 491 sequencing libraries from 2 kits and obtained data from 98.4% of libraries with 86.4% being of good quality. We generated libraries from as low as 3.8 ng of input DNA and found that the success was independent of input DNA amount and quality, processing site and age of the fixed tissues. Since copy number alterations (CNA) play a major role in breast cancer, it is imperative that we are able to use FFPE archives and we have shown in this study that sWGS is a robust method to do such profiling

    The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes

    Get PDF
    The genomic landscape of breast cancer is complex, and inter- and intra-tumour heterogeneity are important challenges in treating the disease. In this study, we sequence 173 genes in 2,433 primary breast tumours that have copy number aberration (CNA), gene expression and long-term clinical follow-up data. We identify 40 mutation-driver (Mut-driver) genes, and determine associations between mutations, driver CNA profiles, clinical-pathological parameters and survival. We assess the clonal states of Mut-driver mutations, and estimate levels of intra-tumour heterogeneity using mutant-allele fractions. Associations between PIK3CA mutations and reduced survival are identified in three subgroups of ER-positive cancer (defined by amplification of 17q23, 11q13-14 or 8q24). High levels of intra-tumour heterogeneity are in general associated with a worse outcome, but highly aggressive tumours with 11q13-14 amplification have low levels of intra-tumour heterogeneity. These results emphasize the importance of genome-based stratification of breast cancer, and have important implications for designing therapeutic strategies.The METABRIC project was funded by Cancer Research UK, the British Columbia Cancer Foundation and Canadian Breast Cancer Foundation BC/Yukon. This sequencing project was funded by CRUK grant C507/A16278 and Illumina UK performed all the sequencing. The authors also acknowledge the support of the University of Cambridge, Hutchinson Whampoa, the NIHR Cambridge Biomedical Research Centre, the Cambridge Experimental Cancer Medicine Centre, the Centre for Translational Genomics (CTAG) Vancouver and the BCCA Breast Cancer Outcomes Unit. We thank the Genomics, Histopathology, and Biorepository Core Facilities at the Cancer Research UK Cambridge Institute, and the Addenbrooke’s Human Research Tissue Bank (supported by the National Institute for Health Research Cambridge Biomedical Research Centre).This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms1147

    Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer.

    Get PDF
    BACKGROUND: There is a need to improve prediction of response to chemotherapy in breast cancer in order to improve clinical management and this may be achieved by harnessing computational metrics of tissue pathology. We investigated the association between quantitative image metrics derived from computational analysis of digital pathology slides and response to chemotherapy in women with breast cancer who received neoadjuvant chemotherapy. METHODS: We digitised tissue sections of both diagnostic and surgical samples of breast tumours from 768 patients enrolled in the Neo-tAnGo randomized controlled trial. We subjected digital images to systematic analysis optimised for detection of single cells. Machine-learning methods were used to classify cells as cancer, stromal or lymphocyte and we computed estimates of absolute numbers, relative fractions and cell densities using these data. Pathological complete response (pCR), a histological indicator of chemotherapy response, was the primary endpoint. Fifteen image metrics were tested for their association with pCR using univariate and multivariate logistic regression. RESULTS: Median lymphocyte density proved most strongly associated with pCR on univariate analysis (OR 4.46, 95 % CI 2.34-8.50, p < 0.0001; observations = 614) and on multivariate analysis (OR 2.42, 95 % CI 1.08-5.40, p = 0.03; observations = 406) after adjustment for clinical factors. Further exploratory analyses revealed that in approximately one quarter of cases there was an increase in lymphocyte density in the tumour removed at surgery compared to diagnostic biopsies. A reduction in lymphocyte density at surgery was strongly associated with pCR (OR 0.28, 95 % CI 0.17-0.47, p < 0.0001; observations = 553). CONCLUSIONS: A data-driven analysis of computational pathology reveals lymphocyte density as an independent predictor of pCR. Paradoxically an increase in lymphocyte density, following exposure to chemotherapy, is associated with a lack of pCR. Computational pathology can provide objective, quantitative and reproducible tissue metrics and represents a viable means of outcome prediction in breast cancer. TRIAL REGISTRATION: ClinicalTrials.gov NCT00070278 ; 03/10/2003.We acknowledge funding from Cancer Research UK and NIHR Cambridge Biomedical Research Centre. HRA is an NIHR Academic Clinical Lecturer supported by a Career Development Fellowship from the Pathological Society of Great Britain and Northern Ireland and a Starter Grant for Clinical Lecturers from the Academy of Medical Sciences.This is the final version of the article. It first appeared from BioMed Central via https://doi.org 10.1186/s13058-016-0682-

    Multi-omic machine learning predictor of breast cancer therapy response.

    Get PDF
    Breast cancers are complex ecosystems of malignant cells and the tumour microenvironment1. The composition of these tumour ecosystems and interactions within them contribute to responses to cytotoxic therapy2. Efforts to build response predictors have not incorporated this knowledge. We collected clinical, digital pathology, genomic and transcriptomic profiles of pre-treatment biopsies of breast tumours from 168 patients treated with chemotherapy with or without HER2 (encoded by ERBB2)-targeted therapy before surgery. Pathology end points (complete response or residual disease) at surgery3 were then correlated with multi-omic features in these diagnostic biopsies. Here we show that response to treatment is modulated by the pre-treated tumour ecosystem, and its multi-omics landscape can be integrated in predictive models using machine learning. The degree of residual disease following therapy is monotonically associated with pre-therapy features, including tumour mutational and copy number landscapes, tumour proliferation, immune infiltration and T cell dysfunction and exclusion. Combining these features into a multi-omic machine learning model predicted a pathological complete response in an external validation cohort (75 patients) with an area under the curve of 0.87. In conclusion, response to therapy is determined by the baseline characteristics of the totality of the tumour ecosystem captured through data integration and machine learning. This approach could be used to develop predictors for other cancers

    Therapeutic rationale to target highly expressed CDK7 conferring poor outcomes in triple-negative breast cancer

    No full text
    Triple-negative breast cancer (TNBC) patients commonly exhibit poor prognosis and high relapse after treatment, but there remains a lack of biomarkers and effective targeted therapies for this disease. Here, we report evidence highlighting the cell-cycle–related kinase CDK7 as a driver and candidate therapeutic target in TNBC. Using publicly available transcriptomic data from a collated set of TNBC patients (n ¼ 383) and the METABRIC TNBC dataset (n ¼ 217), we found CDK7 mRNA levels to be correlated with patient prognosis. High CDK7 protein expression was associated with poor prognosis within the RATHER TNBC cohort (n ¼ 109) and the METABRIC TNBC cohort (n ¼ 203). The highly specific CDK7 kinase inhibitors, BS-181 and THZ1, each downregulated CDK7-mediated phosphorylation of RNA polymerase II, indicative of transcriptional inhibition, with THZ1 exhibiting 500-fold greater potency than BS-181. Mechanistic investigations revealed that the survival of MDA-MB-231 TNBC cells relied heavily on the BCL-2/BCL-XL signaling axes in cells. Accordingly, we found that combining the BCL-2/BCL-XL inhibitors ABT-263/ABT199 with the CDK7 inhibitor THZ1 synergized in producing growth inhibition and apoptosis of human TNBC cells. Collectively, our results highlight elevated CDK7 expression as a candidate biomarker of poor prognosis in TNBC, and they offer a preclinical proof of concept for combining CDK7 and BCL-2/BCL-XL inhibitors as a mechanism-based therapeutic strategy to improve TNBC treatment

    BCOR and BCORL1 Mutations Drive Epigenetic Reprogramming and Oncogenic Signaling by Unlinking PRC1.1 from Target Genes

    No full text
    Polycomb repressive epigenetic complexes are recurrently dysregulated in cancer. Unlike polycomb repressive complex 2 (PRC2), the role of PRC1 in oncogenesis and therapy resistance is not well-defined. Here, we demonstrate that highly recurrent mutations of the PRC1 subunits BCOR and BCORL1 in leukemia disrupt assembly of a noncanonical PRC1.1 complex, thereby selectively unlinking the RING-PCGF enzymatic core from the chromatin-targeting auxiliary subcomplex. As a result, BCOR-mutated PRC1.1 is localized to chromatin but lacks repressive activity, leading to epigenetic reprogramming and transcriptional activation at target loci. We define a set of functional targets that drive aberrant oncogenic signaling programs in PRC1.1-mutated cells and primary patient samples. Activation of these PRC1.1 targets in BCOR-mutated cells confers acquired resistance to treatment while sensitizing to targeted kinase inhibition. Our study thus reveals a novel epigenetic mechanism that explains PRC1.1 tumor-suppressive activity and identifies a therapeutic strategy in PRC1.1-mutated cancer. We demonstrate that BCOR and BCORL1 mutations in leukemia unlink PRC1.1 repressive function from target genes, resulting in epigenetic reprogramming and activation of aberrant cell signaling programs that mediate treatment resistance. Our study provides mechanistic insights into the pathogenesis of PRC1.1-mutated leukemia that inform novel therapeutic approaches. This article is highlighted in the In This Issue feature, p. 85

    Integration of genomic, transcriptomic and proteomic data identifies two biologically distinct subtypes of invasive lobular breast cancer

    No full text
    Invasive lobular carcinoma (ILC) is the second most frequently occurring histological breast cancer subtype after invasive ductal carcinoma (IDC), accounting for around 10% of all breast cancers. The molecular processes that drive the development of ILC are still largely unknown. We have performed a comprehensive genomic, transcriptomic and proteomic analysis of a large ILC patient cohort and present here an integrated molecular portrait of ILC. Mutations in CDH1 and in the PI3K pathway are the most frequent molecular alterations in ILC. We identified two main subtypes of ILCs: (i) an immune related subtype with mRNA up-regulation of PD-L1, PD-1 and CTLA-4 and greater sensitivity to DNA-damaging agents in representative cell line models; (ii) a hormone related subtype, associated with Epithelial to Mesenchymal Transition (EMT), and gain of chromosomes 1q and 8q and loss of chromosome 11q. Using the somatic mutation rate and eIF4B protein level, we identified three groups with different clinical outcomes, including a group with extremely good prognosis. We provide a comprehensive overview of the molecular alterations driving ILC and have explored links with therapy response. This molecular characterization may help to tailor treatment of ILC through the application of specific targeted, chemo- and/or immune-therapies
    corecore