11 research outputs found

    Displacement Damage Effects in Pinned Photodiode CMOS Image Sensors

    Get PDF
    This paper investigates the effects of displacement damage in Pinned Photodiode (PPD) CMOS Image Sensors (CIS) using proton and neutron irradiations. The DDD ranges from 12 TeV/g to 1.2times106{1.2 times 10^{6}} TeV/g. Particle fluence up to 5times10145 times 10^{14} n.cm −2^{-2} is investigated to observe electro-optic degradation in harsh environments. The dark current is also investigated and it would appear that it is possible to use the dark current spectroscopy in PPD CIS. The dark current random telegraph signal is also observed and characterized using the maximum transition amplitude

    Similarities Between Proton and Neutron Induced Dark Current Distribution in CMOS Image Sensors

    Get PDF
    Several CMOS image sensors were exposed to neutron or proton beams (displacement damage dose range from 4 TeV/g to 1825 TeV/g) and their radiation-induced dark current distributions are compared. It appears that for a given displacement damage dose, the hot pixel tail distributions are very similar, if normalized properly. This behavior is observed on all the tested CIS designs (4 designs, 2 technologies) and all the tested particles (protons from 50 MeV to 500 MeV and neutrons from 14 MeV to 22 MeV). Thanks to this result, all the dark current distribution presented in this paper can be fitted by a simple model with a unique set of two factors (not varying from one experimental condition to another). The proposed normalization method of the dark current histogram can be used to compare any dark current distribution to the distributions observed in this work. This paper suggests that this model could be applied to other devices and/or irradiation conditions

    Influence of displacement damage dose on dark current distributions of irradiated CMOS image sensors

    Get PDF
    Dark current increase distributions due to displacement damages are modeled using displacement damage dose concept. Several CMOS image sensors have been exposed to neutrons or protons and we have characterized their degradation in terms of dark current increase. We have been able to extract a set of two factors from the experimental dark current increase distributions. These factors are used to predict and build dark current increase distribution and leads to a better understanding of displacement damage effects on CMOS image sensors

    Dark Current Random Telegraph Signals in Solid-State Image Sensors

    Get PDF
    This paper focuses on the Dark Current-Random Telegraph Signal (DC-RTS) in solid-state image sensors. The DCRTS is investigated in several bulk materials, for different surface interfaces and for different trench isolation interfaces. The main parameter used to characterize the DC-RTS is the transition maximum amplitude which seems to be the most appropriate for studying the phenomenon and identifying its origin. Proton, neutron and Co-60 Gamma-ray irradiations are used to study DC-RTS induced by both Total Ionizing Dose (TID) and Displacement damage (Dd) dose. Conclusions are drawn by analyzing the correlation between the exponential slope of the transition maximum amplitude histogram and the location of the DC-RTS-induced defects. The presented results can be extrapolated to predict DC-RTS distributions in various kinds of solid state image sensors

    Radiation-Induced Dose and Single Event Effects in Digital CMOS Image Sensors

    Get PDF
    This paper focuses on radiation-induced dose and single event effects in digital CMOS image sensors using pinned photodiodes. Proton irradiations were used to study cumulative effects. As previously observed, the dark current is the main electrical parameter affected by protons. The mean dark current increase appears proportional to Srour's universal damage factor. Therefore, the degradation is mainly attributed to displacement damage in the pinned photodiode. Heavy ion tests are also reported in this work. This study focuses on single event effects in digital CMOS imagers using numerous electronic functions such as column ADCs, a state machine and registers. Single event transients, upsets and latchups are observed and analyzed. The cross sections of these single events are transposed to specific space imaging missions in order to show that the digital functions can fit the mission requirements despite these perturbations

    Impact of Proton Irradiation on SiPM Dark Current for High-Energy Space Instruments

    No full text
    International audienceAs photon detection is a major issue in any high-energy astronomy instrumentation, many space missions combined photomultiplier tubes (PMTs) with scintillators, for converting incoming high-energy photons into visible light, which in turn is converted in an electrical pulse. The silicon photomultipliers (SiPM), instead of PMTs which are bulky, fragile, and requiring a high-voltage power supply of up to several thousand volts, seem to be an encouraging alternative in the space field. We started a R&D program to assess the possibility of using SiPMs for space-based applications in the domain of high-energy astronomy. We already presented some results of the detector characterization to study the SiPM performance in a representative space environment, namely at low temperature and low pressure. For this purpose, we developed a dedicated vacuum chamber with a specific mechanical and thermal controlled system. After measuring dark current, dark count rate and PDE (Photon Detection Efficiency), we performed a first campaign of irradiation tests at UCL (Belgium) in order to understand the susceptibility of SiPM to radiation damage on two selected detectors (Ketek and SensL references) with a high level of fluence. Finally we led a new proton irradiation campaign based on several lower levels of fluence and two energies for further study. We then present the results of dark current measurements of irradiated SensL detectors

    Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil

    No full text
    International audienceSoil microorganisms play a pivotal role in soil organic matter (SOM) turn-over and their diversity is discussed as a key to the function of soil ecosystems. However, the extent to which SOM dynamics may be linked to changes in soil microbial diversity remains largely unknown. We characterized SOM degradation along a microbial diversity gradient in a two month incubation experiment under controlled laboratory conditions. A microbial diversity gradient was created by diluting soil suspension of a silty grassland soil. Microcosms containing the same sterilized soil were re-inoculated with one of the created microbial diversities, and were amended with C-13 labeled wheat in order to assess whether SOM decomposition is linked to soil microbial diversity or not. Structural composition of wheat was assessed by solid-state C-13 nuclear magnetic resonance, sugar and lignin content was quantified and labeled wheat contribution was determined by C-13 compound specific analyses. Results showed decreased wheat O-alkyl-C with increasing microbial diversity. Total non-cellulosic sugar-C derived from wheat was not significantly influenced by microbial diversity. Carbon from wheat sugars (arabinose-C and xylose-C), however, was highest when microbial diversity was low, indicating reduced wheat sugar decomposition at low microbial diversity. Xylose-C was significantly correlated with the Shannon diversity index of the bacterial community. Soil lignin-C decreased irrespective of microbial diversity. At low microbial diversity the oxidation state of vanillyl-lignin units was significantly reduced. We conclude that microbial diversity alters bulk chemical structure, the decomposition of plant litter sugars and influences the microbial oxidation of total vanillyl-lignins, thus changing SOM composition

    La sensibilité des communautés microbiennes à une augmentation de la température augmente quand la biodégradabilité de la ressource organique baisse

    No full text
    La sensibilité des communautés microbiennes à une augmentation de la température augmente quand la biodégradabilité de la ressource organique baisse. 12. Journées d'Etude des Sol

    High Risk of Anal and Rectal Cancer in Patients With Anal and/or Perianal Crohn’s Disease

    No full text
    International audienceBackground & AimsLittle is known about the magnitude of the risk of anal and rectal cancer in patients with anal and/or perineal Crohn’s disease. We aimed to assess the risk of anal and rectal cancer in patients with Crohn’s perianal disease followed up in the Cancers Et Surrisque AssociĂ© aux Maladies Inflammatoires Intestinales En France (CESAME) cohort.MethodsWe collected data from 19,486 patients with inflammatory bowel disease (IBD) enrolled in the observational CESAME study in France, from May 2004 through June 2005; 14.9% of participants had past or current anal and/or perianal Crohn’s disease. Subjects were followed up for a median time of 35 months (interquartile range, 29–40 mo). To identify risk factors for anal cancer in the total CESAME population, we performed a case-control study in which participants were matched for age and sex.ResultsAmong the total IBD population, 8 patients developed anal cancer and 14 patients developed rectal cancer. In the subgroup of 2911 patients with past or current anal and/or perianal Crohn’s lesions at cohort entry, 2 developed anal squamous-cell carcinoma, 3 developed perianal fistula–related adenocarcinoma, and 6 developed rectal cancer. The corresponding incidence rates were 0.26 per 1000 patient-years for anal squamous-cell carcinoma, 0.38 per 1000 patient-years for perianal fistula–related adenocarcinoma, and 0.77 per 1000 patient-years for rectal cancer. Among the 16,575 patients with ulcerative colitis or Crohn’s disease without anal or perianal lesions, the incidence rate of anal cancer was 0.08 per 1000 patient-years and of rectal cancer was 0.21 per 1000 patient-years. Among factors tested by univariate conditional regression (IBD subtype, disease duration, exposure to immune-suppressive therapy, presence of past or current anal and/or perianal lesions), the presence of past or current anal and/or perianal lesions at cohort entry was the only factor significantly associated with development of anal cancer (odds ratio, 11.2; 95% CI, 1.18-551.51; P = .03).ConclusionsIn an analysis of data from the CESAME cohort in France, patients with anal and/or perianal Crohn’s disease have a high risk of anal cancer, including perianal fistula–related cancer, and a high risk of rectal cancer
    corecore