175 research outputs found

    The Luminosity Function Evolution of Soft X--ray selected AGN in the RIXOS survey

    Get PDF
    A sample of 198 soft X--ray selected active galactic nuclei (AGN) from the ROSAT International X--ray Optical Survey (RIXOS), is used to investigate the X--ray luminosity function and its evolution. RIXOS, with a flux limit of 3E-14 erg s-1 cm-2 (0.5 to 2.0 keV), samples a broad range in redshift over 20 deg^2 of sky, and is almost completely identified; it is used in combination with the Einstein Extended Medium Sensitivity Survey (EMSS), to give a total sample of over 600 AGN. We find the evolution of AGN with redshift to be consistent with pure luminosity evolution (PLE) models in which the rate of evolution slows markedly or stops at high redshifts z>1.8. We find that this result is not affected by the inclusion, or exclusion, of narrow emission line galaxies at low redshift in the RIXOS and EMSS samples, and is insensitive to uncertainties in the conversion between flux values measured with ROSAT and Einstein. We confirm, using a model independent Ve/Va test, that our survey is consistent with no evolution at high redshifts.Comment: 10 pages, LaTeX file, PS figures and mn.sty. Accepted in MNRA

    The ATHENA X-ray Integral Field Unit (X-IFU)

    Get PDF
    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5" pixels over a eld of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we rst review the core scienti c objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the eld of view, the e ective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we brie y describe the X-IFU design as de ned at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution)

    The exact Darwin Lagrangian

    Get PDF
    Darwin (1920) noted that when radiation can be neglected it should be possible to eliminate the radiation degrees-of-freedom from the action of classical electrodynamics and keep the discrete particle degrees-of-freedom only. Darwin derived his well known Lagrangian by series expansion in v/cv/c keeping terms up to order (v/c)2(v/c)^2. Since radiation is due to acceleration the assumption of low speed should not be necessary. A Lagrangian is suggested that neglects radiation without assuming low speed. It cures deficiencies of the Darwin Lagrangian in the ultra-relativistic regime.Comment: 2.5 pages, no figure

    XMM-Newton spectral and timing analysis of the faint millisecond pulsars PSR J0751+1807 and PSR J1012+5307

    Full text link
    We present XMM-Newton MOS imaging and PN timing data of the faint millisecond pulsars PSR J0751+1807 and PSR J1012+5307. We find 46 sources in the MOS field of view of PSR J0751+1807 searching down to an unabsorbed flux limit of 3 x 10^-15 ergs cm^-2 s^-1 (0.2-10.0 keV). We present, for the first time, the X-ray spectra of these two faint millisecond pulsars. We find that a power law model best fits the spectrum of PSR J0751+1807, Gamma=1.59+/-0.20, with an unabsorbed flux of 4.4 x 10^-14 ergs cm^-2 s^-1 (0.2-10.0 keV). A power law is also a good description of the spectrum of PSR J1012+5307, Gamma=1.78+/-0.36, with an unabsorbed flux of 1.2 x 10^-13 ergs cm^-2 s^-1 (0.2-10.0 keV). However, a blackbody model can not be excluded as the best fit to this data. We present some evidence to suggest that both of these millisecond pulsars show pulsations in this X-ray band. We find some evidence for a single broad X-ray pulse for PSR J0751+1807 and we discuss the possibility that there are two pulses per spin period for PSR J1012+5307.Comment: 8 pages, 9 figures, accepted for publication in Astronomy & Astrophysic

    INTEGRAL and XMM-Newton observations towards the unidentified MeV source GRO J1411-64

    Get PDF
    The COMPTEL unidentified source GRO J1411-64 was observed by INTEGRAL, and its central part, also by XMM-Newton. The data analysis shows no hint for new detections at hard X-rays. The upper limits in flux herein presented constrain the energy spectrum of whatever was producing GRO J1411-64, imposing, in the framework of earlier COMPTEL observations, the existence of a peak in power output located somewhere between 300-700 keV for the so-called low state. The Circinus Galaxy is the only source detected within the 4σ\sigma location error of GRO J1411-64, but can be safely excluded as the possible counterpart: the extrapolation of the energy spectrum is well below the one for GRO J1411-64 at MeV energies. 22 significant sources (likelihood >10> 10) were extracted and analyzed from XMM-Newton data. Only one of these sources, XMMU J141255.6-635932, is spectrally compatible with GRO J1411-64 although the fact the soft X-ray observations do not cover the full extent of the COMPTEL source position uncertainty make an association hard to quantify and thus risky. The unique peak of the power output at high energies (hard X-rays and gamma-rays) resembles that found in the SED seen in blazars or microquasars. However, an analysis using a microquasar model consisting on a magnetized conical jet filled with relativistic electrons which radiate through synchrotron and inverse Compton scattering with star, disk, corona and synchrotron photons shows that it is hard to comply with all observational constrains. This and the non-detection at hard X-rays introduce an a-posteriori question mark upon the physical reality of this source, which is discussed in some detail

    Clustering of X-ray selected Active Galactic Nuclei

    Get PDF
    A total of 235 Active Galactic Nuclei (AGN) from two different soft X-ray surveys (the ROSAT Deep Survey -DRS- and the ROSAT International X-ray Optical Survey -RIXOS-) with redshifts between 0 and 3.5 are used to study the clustering of X-ray selected AGN and its evolution. A 2 sigma significant detection of clustering of such objects is found on scales <40-80/h Mpc in the RIXOS sample, while no clustering is detected on any scales in the DRS sample. Assuming a single power law model for the spatial correlation function (SCF), quantitative limits on the AGN clustering have been obtained: a comoving correlation length 1.5<~ r_0 <~ 3.3/h Mpc is implied for comoving evolution, while 1.9 <~ r_0 <~ 4.8 for stable clustering and 2.2 <~ r_0 <~ 5.5 for linear evolution. These values are consistent with the correlation lengths and evolutions obtained for galaxy samples, but imply smaller amplitude or faster evolution than recent UV and optically selected AGN samples. We also constrain the ratio of bias parameters between X-ray selected AGN and IRAS galaxies to be <~1.7 on scales <~ 10/h Mpc, a significantly smaller value than is inferred from local large-scale dynamical studies.Comment: LaTeX file, 9 pages with 7 figures. To be published in MNRA

    The XMM-Newton Serendipitous Survey. VI. The X-ray Luminosity Function

    Full text link
    We present the X-ray luminosity function of AGN in three energy bands (Soft: 0.5-2 keV, Hard: 2-10 keV and Ultrahard: 4.5-7.5 keV). We have used the XMS survey along with other highly complete flux-limited deeper and shallower surveys for a total of 1009, 435 and 119 sources in the Soft, Hard and Ultrahard bands, respectively. We have modeled the intrinsic absorption of the Hard and Ultrahard sources (NH function) and computed the intrinsic X-ray luminosity function in all bands using a Maximum Likelihood fit technique to an analytical model. We find that the X-ray luminosity function (XLF) is best described by a Luminosity-Dependent Density Evolution (LDDE) model. Our results show a good overall agreement with previous results in the Hard band, although with slightly weaker evolution. Our model in the Soft band present slight discrepancies with other works in this band, the shape of our present day XLF being significantly flatter. We find faster evolution in the AGN detected in the Ultrahard band than those in the Hard band. The fraction of absorbed AGN in the Hard and Ultrahard bands is dependent on the X-ray luminosity. We find evidence of evolution of this fraction with redshift in the Hard band but not in the Ultrahard band, possibly due to the low statistics. Our best-fit XLF shows that the high-luminosity AGN are fully formed earlier than the less luminous AGN. The latter sources account for the vast majority of the accretion rate and mass density of the Universe, according to an anti-hierarchical black hole growth scenario.Comment: 16 pages, 12 figures, accepted for publication in Astronomy and Astrophysic

    Electron-multiplying CCDs for future soft X-ray spectrometers

    Get PDF
    CCDs have been used in several high resolution soft X-ray spectrometers for both space and terrestrial applications such as the Reflection Grating Spectrometer on XMM-Newton and the Super Advanced X-ray Emission Spectrometer at the Paul Scherrer Institut in Switzerland. However, with their ability to use multiplication gain to amplify signal and suppress readout noise, EM-CCDs are being considered instead of CCDs for future soft X-ray spectrometers. When detecting low energy X-rays, EM-CCDs are able to increase the Signal-to-Noise ratio of the device, making the X-rays much easier to detect. If the signal is also significantly split between neighbouring pixels, the increase in the size of the signal will make complete charge collection and techniques such as centroiding easier to accomplish. However, multiplication gain from an EM-CCD does cause a degradation of the energy resolution of the device and there are questions about how the high field region in an EM-CCD will behave over time in high radiation environments. This paper analyses the possible advantages and disadvantages of using EM-CCDs for high resolution soft X-ray spectroscopy and suggests in which situations using them would not only be possible, but also beneficial to the instrument
    corecore